
THESIS

presented at

Université Paul Sabatier - Toulouse III
U.F.R. MATHÉMATIQUES, INFORMATIQUE ET GESTION

to obtain the title of

DOCTEUR DE L’UNIVERSITÉ DE TOULOUSE

delivered by

UNIVERSITÉ PAUL SABATIER - TOULOUSE III

Mention INFORMATIQUE

by

TOM JORQUERA

Doctoral school: Informatique et Télécommunication
Laboratory: Institut de Recherche en Informatique de Toulouse

Team: Systèmes Multi-Agents Coopératifs

An Adaptive Multi-Agent System for Self-Organizing

Continuous Optimization

JURY

Abderrafiaa KOUKAM Professor, Université de Technologie de
Belfort-Montbéliard

(Reviewer)

René MANDIAU Professor, Université de Valenciennes (Reviewer)

Gauthier PICARD Associate Professor, École Nationale
Supérieure des Mines de Saint-Étienne

(Examiner)

Juan A. RODRÍGUEZ-AGUILAR Tenured Scientist, Artificial Intelligence
Research Institute

(Examiner)

Marie-Pierre GLEIZES Professor, Université Toulouse III (Supervisor)
Jean-Pierre GEORGÉ Associate Professor, Université Toulouse III (Co-Supervisor)

Davy CAPERA UPETEC CTO - R&D Manager (Invited)
Thierry DRUOT Airbus Engineer, Toulouse (Invited)

Tom Jorquera

AN ADAPTIVE MULTI-AGENT SYSTEM FOR SELF-ORGANIZING

CONTINUOUS OPTIMIZATION

Supervisors: Marie-Pierre GLEIZES, Jean-Pierre GEORGÉ

Université de Toulouse III

Abstract
This thesis presents a novel approach to distribute complex continuous optimization

processes among a network of cooperative agents. Continuous optimization is a very broad
field, including multiple specialized sub-domains aiming at efficiently solving a specific
subset of continuous optimization problems. While this approach has proven successful for
multiple application domains, it has shown its limitations on highly complex optimization
problems, such as complex system design optimization. This kind of problems usually
involves a large number of heterogeneous models coming from several interdependent
disciplines.

In an effort to tackle such complex problems, the field of multidisciplinary optimization
methods was proposed. Multidisciplinary optimization methods propose to distribute the
optimization process, often by reformulating the original problem is a way that reduce the
interconnections between the disciplines. However these methods present several drawbacks
regarding the difficulty to correctly apply them, as well as their lack of flexibility.

Using the AMAS (Adaptive Multi-Agent Systems) theory, we propose a multi-agent
system which distributes the optimization process, applying local optimizations on the
different parts of the problem while maintaining a consistent global state. The AMAS theory,
developed by the SMAC team, focuses on cooperation as the fundamental mechanism for the
design of complex artificial systems. The theory advocates the design of self-adaptive agents,
interacting cooperatively at a local level in order to help each others to attain their local goals.

Based on the AMAS theory, we propose a general agent-based representation of continu-
ous optimization problems. From this representation we propose a nominal behavior for the
agents in order to do the optimization process. We then identify some specific configurations
which would disturb this nominal optimization process, and present a set of cooperative
behaviors for the agents to identify and solve these problematic configurations.

At last, we use the cooperation mechanisms we introduced as the basis for more general
Collective Problem Solving Patterns. These patterns are high-level guideline to identify and
solve potential problematic configurations which can arise in distributed problem solving
systems. They provide a specific cooperative mechanism for the agents, using abstract
indicators that are to be instantiated on the problem at hand.

We validate our system on multiple test cases, using well-known classical optimization
problems as well as multidisciplinary optimization benchmarks. In order to study the scala-
bility properties of our system, we proposed two different ways to automatically generate
valid optimization problems. Using these techniques we generate large test sets which allow
us to validate several properties of our system.

An Adaptive MAS for Self-Organizing Continuous Optimization i

Summary

Introduction 1

I Context of the Study and State of the Art 5
1 Continuous Optimization 7

2 Multi-Objective Optimization 23

3 Multidisciplinary Optimization 31

4 Multi-Agent Systems for Optimization and the AMAS Theory 51

II A Multi-Agent System for Continuous Optimization 63
5 Agent-Based Modeling and Simulation of a Continuous Optimization Problem 67

6 Agents Behavior 77

7 Extending the Multi-Agent System for Uncertainties 111

III Design, Implementation and Extending the AMAS4Opt Building Blocks
119

8 ADELFE and MAY Architecture 123

9 Collective Problem Solving Patterns 137

IV Experiments and Validation 147
10 Behavior Validation using Academic Test Cases 151

11 Comparison with Existing Methods 161

12 Evaluating Scalability Performances using Generated Test Cases 167

Conclusion and Perspectives 177

V Appendix 181
Author’s Bibliography 183

Bibliography 185

An Adaptive MAS for Self-Organizing Continuous Optimization iii

Contents

Introduction 1

I Context of the Study and State of the Art 5

1 Continuous Optimization 7
1.1 Basic Concepts . 7

1.1.1 Continuous versus Discrete Optimization 9
1.1.2 No Free Lunch Theorem . 10

1.2 Continuous Optimization Methods . 11
1.3 Linear Optimization . 12
1.4 Local Methods . 13

1.4.1 Using Derivatives . 13
1.4.2 Derivative-Free . 15

1.5 Global Methods . 16
1.5.1 Exact Methods . 17
1.5.2 Heuristic Methods . 17

1.6 Analysis of Continuous Optimization . 20

2 Multi-Objective Optimization 23
2.1 A Priori Methods . 24

2.1.1 Objectives Aggregation . 24
2.1.2 Lexicographic Method . 25
2.1.3 ε-constraint Method . 25
2.1.4 Goal Programming . 25
2.1.5 MinMax Method . 26
2.1.6 Analysis of a priori methods . 26

2.2 A Posteriori Methods . 26
2.2.1 Pareto Dominance . 27
2.2.2 Multi-Objective Evolutionary Algorithms 28

2.3 Analysis of MOO . 29

3 Multidisciplinary Optimization 31
3.1 Mono-Level Methods . 33

3.1.1 Multidisciplinary Feasible . 33
3.1.2 Individual Discipline Feasible . 34
3.1.3 All-At-Once . 35

3.2 Multi-Level Methods . 35

iv Tom Jorquera

Contents

3.2.1 Concurrent Subspace Optimization . 35
3.2.2 Collaborative Optimization . 36
3.2.3 Bilevel Integrated System Synthesis . 37
3.2.4 Asymmetric Subspace Optimization . 37
3.2.5 MDO based on Independent Subspaces 38
3.2.6 Quasiseparable Subsystems Decomposition 38

3.3 Design Optimization Under Uncertainties . 39
3.3.1 Several types of uncertainties . 39
3.3.2 Uncertainties Modeling Techniques . 40
3.3.3 Using Uncertainty for Robust Optimization 43
3.3.4 Uncertainties in Multidisciplinary Optimization 45

3.4 Analysis of MDO . 45

4 Multi-Agent Systems for Optimization and the AMAS Theory 51
4.1 Multi-Agent Systems . 51

4.1.1 Principles of Multi-Agent System . 52
4.1.2 Self-* capabilities . 52
4.1.3 Multi-Agent Systems for Distributed Problem Solving 53

4.2 The Adaptive Multi-Agent Systems Theory . 57
4.2.1 Theorem of Functional Adequacy . 57
4.2.2 Cooperative Agents and Non Cooperative Situations 59
4.2.3 The Importance of Locality . 60
4.2.4 ADELFE - A Method for Designing AMAS 61
4.2.5 Conclusion on the Adaptive Multi-Agent Systems Theory 61

II A Multi-Agent System for Continuous Optimization 63

5 Agent-Based Modeling and Simulation of a Continuous Optimization Problem 67
5.1 NDMO: A Natural Domain Modeling for Optimization 67

5.1.1 Models . 69
5.1.2 Design Variables . 69
5.1.3 Outputs . 69
5.1.4 Constraints . 69
5.1.5 Objectives . 71

5.2 From an Optimization Problem to a Multi-Agent System 71
5.2.1 Model Agent . 72
5.2.2 Variable Agent . 72
5.2.3 Output Agent . 73
5.2.4 Constraint Agent . 74
5.2.5 Objective Agent . 74

6 Agents Behavior 77
6.1 Problem Simulation . 77

6.1.1 Variable Agent . 78
6.1.2 Model Agent . 79
6.1.3 Output Agent . 80

An Adaptive MAS for Self-Organizing Continuous Optimization v

Contents

6.1.4 Constraint/Objective Agent . 80
6.2 Collective Solving . 81

6.2.1 Variable Agent . 82
6.2.2 Model Agent . 84
6.2.3 Output Agent . 85
6.2.4 Constraint Agent . 85
6.2.5 Objective Agent . 87
6.2.6 Adaptive Agents and Co-design . 88

6.3 Non-Cooperative Situations . 90
6.3.1 Conflicting Requests . 91
6.3.2 Cooperative Trajectories . 95
6.3.3 Cycle Solving . 99
6.3.4 Hidden Dependencies . 101
6.3.5 Asynchronous Messages . 105
6.3.6 Summary of Non-Cooperative Situations 107

7 Extending the Multi-Agent System for Uncertainties 111
7.1 From Deterministic Optimization to Optimization under Uncertainties 111
7.2 Manipulating Uncertain Values . 112
7.3 Uncertainties Propagators . 114
7.4 Conclusion on Uncertainties Handling . 115

III Design, Implementation and Extending the AMAS4Opt Building Blocks
119

8 ADELFE and MAY Architecture 123
8.1 Overview of ADELFE . 123
8.2 Applying ADELFE for the Design of a Continuous Optimization Tool 124
8.3 MAY Agent Architecture . 126

8.3.1 Behavior . 127
8.3.2 Communication . 129
8.3.3 Monitoring . 131

8.4 MAY MAS Architecture . 131
8.5 Integration into the Prototype . 134

8.5.1 MAS . 134
8.5.2 CORE . 134
8.5.3 GUI . 134

9 Collective Problem Solving Patterns 137
9.1 Introduction - Collective Problem Solving Patterns are not Design Patterns . . 138
9.2 Description of a Problem Solving Pattern . 139

9.2.1 Agent Roles . 139
9.2.2 Pattern Description . 140

9.3 Identified Collective Problem Solving Patterns 140
9.3.1 Conflicting Requests . 140
9.3.2 Cooperative Trajectories . 142

vi Tom Jorquera

Contents

9.3.3 Cycle Solving . 142
9.3.4 Hidden Dependencies . 142
9.3.5 Asynchronous Requests . 143

9.4 Conclusion on Collective Problem Solving Patterns 144

IV Experiments and Validation 147

10 Behavior Validation using Academic Test Cases 151
10.1 Turbofan Problem . 151
10.2 Viennet1 . 151
10.3 Rosenbrock’s valley . 152
10.4 Alexandrov Problem . 153
10.5 Analysis of Academic Test Cases . 154
10.6 Optimization under Uncertainties . 156
10.7 Adaptation to Perturbations . 157

10.7.1 Perturbated Alexandrov Problem . 157
10.7.2 Perturbated Turbofan Problem . 157

11 Comparison with Existing Methods 161
11.1 Comparison Criteria . 161
11.2 Comparison Problem 1 . 162
11.3 Comparison Problem 2 . 164
11.4 Comparison Synthesis . 165

12 Evaluating Scalability Performances using Generated Test Cases 167
12.1 Generated Problem Graphs . 167

12.1.1 Generating NDMO Agent Graphs . 167
12.1.2 Experimental Results . 169
12.1.3 Analysis of Performances . 171

12.2 Springs Networks . 172
12.2.1 Representing Springs Networks with NDMO 172
12.2.2 Springs Networks Experiments . 173

Conclusion and Perspectives 177

V Appendix 181

Author’s Bibliography 183

Bibliography 185

An Adaptive MAS for Self-Organizing Continuous Optimization vii

Introduction

Complex Continuous Optimization and Multi-Agent Systems

Continuous optimization is a very large field, including various methods tailored for
diverse but specific requirements. While this approach was successful in providing a toolbox
of specialized methods, the evolution of industrial needs draws attention to some of its limi-
tations. Indeed, current optimization methods fail to handle the more complex optimization
problems. These problems are characterized by heavy calculus, many interdependencies
between their components and the expertise domains they involve. Classical optimization
tools struggle with these problems because of these factors, and specific methods have been
proposed to handle this complexity, giving birth to the field of Multidisciplinary Design
Optimization (MDO). However, MDO methods involve possibly important transformations
to the original problem in order to divide it into simpler ones, which makes these approaches
somewhat cumbersome and potentially inefficient for highly connected problems.
This issue is especially present in the context of complex, real-world systems design (air-
crafts, space shuttles etc.), where the complexity of the problem is usually a reflection of
the complexity of the system being built. In this context, the problem is not only very large
and interconnected but also often not completely defined and is continuously corrected and
modified during the design process. The optimization problem is basically in a feedback loop
with the designer solving it, where a solution to the problem provides new information to
the designer, which in return refines the problem formulation and so on. Existing methods
are not adapted to such a dynamic co-design process, as they often need to be restarted from
scratch if the problem formulation is modified.

At the same time, new paradigms are being proposed to handle systemic complexity. One
of the most successful is the field of Multi-Agent Systems (MAS). This approach proposes
to handle problem complexity using systems of autonomous interacting agents. Instead
of reducing the problem in order to solve it using a centralized process, MAS techniques
preserve the original problem and use decentralized mechanisms in order to spread the
solving effort among the agents. MAS has proved successful in the field of combinatorial
optimization, on problems such as graph coloring, sensors network or scheduling. However,
very few applications of MAS have been proposed in the context of continuous optimization,
and these proposals are restricted to specific application domains or optimization categories.

An Adaptive MAS for Self-Organizing Continuous Optimization 1

Introduction

During the last ten years, the scientific community has pursued the effort to bridge the
gap between these two apparently irreconcilable approaches: mathematical optimization
and MAS. The goal of this thesis is to contribute to this effort by addressing this mostly
unexplored potential application field of MAS: complex continuous optimization.

Contributions of the Thesis

The first contributions of this thesis concern the design of a MAS for the solving of
complex continuous optimization problems:

We study continuous optimization problems and show how all of them share a common
structure. Using this observation, we propose a representation of continuous optimization
problems using entities graphs, which we call Natural Domain Modeling for Optimization
(NDMO), as it preserves the natural expression of the problem.

Based on the NDMO representation we identify several agent roles for the graph en-
tities. For each agent role we propose a nominal behavior in order to produce a MAS
capable of distributing the optimization process. This system is not only able to distribute
the continuous optimization process, but is also capable of adapting to changes made by the
expert to the problem formulation during solving, enabling the co-design of a system.

In accordance with the Adaptive Multi-Agent Systems (AMAS) theory, we identify a
set of Non-Cooperative Situations (NCSs) susceptible to disturb the normal optimization
process, and propose a set of cooperation mechanisms to handle them.

We demonstrate the modularity of our system by introducing additional concerns with
the handling of uncertainties propagation.

From this work follow two more general contributions concerning the design of MAS.

Using the Make Agent Yourself framework we propose a component-based architecture
for AMAS adapted to the handling of multiple agent roles and NCSs-related mechanisms.
This architecture is based on the idea of stackable skills components following the hierarchy
of agent roles, providing the correct methods at the required level.

We also provide a more theoretical contribution by abstracting the NCSs and solving
mechanisms into more general Collective Problem Solving Patterns (CPSPs). These CPSPs
are based on a more high-level agent role representation, and are abstracted from any direct
application domain. They represent specific agents topologies which can be encountered
in agents organizations leading to a disruption of the correct system function, as well as
of solving mechanisms proposed to handle such configurations. We propose a schematic
“blueprint” representation which synthesizes the content of the different patterns.

At last, we integrate our MAS nto a working prototype and apply it on real-world
problems provided by our industrial partners Airbus and Snecma, in the context of the
Integrated Design for Complex Systems project, a French National Research Agency funded
project.

2 Tom Jorquera

Introduction

Manuscript Organization

This thesis is divided into 4 parts, divided in several chapters:

Part I. This part introduces the context of the study by presenting an overview of the
continuous optimization field, MAS for optimization and the AMAS theory.

Part II. This part presents a MAS for solving continuous optimization problems. We
propose a modeling of a continuous optimization problem as an agents graph, and
describe the cooperative behaviors associated with the different agent roles.

Part III. The integration of our MAS into a working prototype is presented in this part. Based
on our experience we propose a component-based architecture for AMAS agents
and extend previous works on providing AMAS engineering tools by introducing
CPSPs.

Part IV. In this part we present the experiments we did in order to evaluate and validate
our approach.

An Adaptive MAS for Self-Organizing Continuous Optimization 3

An Adaptive Multi-Agent System for
Self-Organizing Continuous Optimization

Context of the Study and State of the

Art

An Adaptive MAS for Self-Organizing Continuous Optimization 5

1 Continuous Optimization

1.1 Basic Concepts

Before starting to present the different categories of optimization, we would like to take a
moment to define what exactly is optimization.
In the most general way, optimizing is trying to find the best element among an elements set. When
finding this best element is not trivial, we can rightfully talk about solving an optimization
problem. This seemingly simple definition implies in fact quite a lot.

First of all it requires a defined set of elements to choose from. As we will see, the topology
of the set is of the utmost importance when deciding of a method to solve the problem. This
set of elements is often named the search space, solution space or domain. In “basic” optimization
problems, the search space can be simply defined by a set of elements (for example {a, b, c}
or R) associated with a set of constraints. For large problems, the search space can be defined
by calculus-heavy equations, empirical models, complex algorithms... or even a mix of all of
the above.

Search space - the set containing all the possible candidate solutions for
the optimization problem.

While we said that the search space can be defined by a set of constraints, it is often
more convenient to express the constraints separately. For example, if the search space of an
optimization problem is defined over all the real numbers lower than 2, instead of defining
the search space as [−∞, 2], it will usually be refereed as R, with the added constraint x < 2.
Usually we say the problem to be subject to (s.t.) the constraint x < 2.
In theory these two formulations should be equivalent. In practice however, these constraints
are often the result of a real-world concern, and thus subject to some inherent imprecisions.
Let us imagine an optimization problem defined by an engineer trying to design an aircraft.
Among the constraints defined by the engineer, the aircraft weight must be lower or equal to
40t. Does it means that a solution for which the weight of the aircraft would be 40t and 200g
would be completely unacceptable? Obviously not, the designer may be willing to accept
some concessions in regard of the violation of this constraint. In engineering design, this is a
common situation, and making these constraints explicit can be advantageous.

Since we want to find the best element of this solution space, we have to determine what
makes an element better than another. Usually, the possible solutions are compared through
a specific function called the objective-function, or cost function. The best element would be

An Adaptive MAS for Self-Organizing Continuous Optimization 7

I

Continuous Optimization

a b

c

d

e

Figure 1.1: Examples of local and global optima - a and b are global maxima, c is a local
minimum, d is a local maximum and e is the global minimum.

the one for which the objective function returns a minimal (or alternatively, maximal1) value.
It should be noted that it is possible for a problem to admit several equivalent solutions in
regard of the objective-function.

Objective-function - a function defined over the search space of the opti-
mization problem, expressing the goal of a stakeholder for this problem.

When the search space is very large, or its topology is complicated, it can be really long or
difficult to find the best solution and, more important, to be sure that the solution is the best.
In fact, the only way to find the best solution with certainty may be an exhaustive exploration
of the search space. Since it can be very costly regarding time and computation, instead
of finding the best solution, we settle for the best known, which is considered to be “good
enough”, for example because this solution is the best of its neighborhood in a subset of the
search space. The absolute best solution is called the global optimum, while the best solution
in a neighborhood is called a local optimum. In a similar fashion, methods which try to find
the global solution are said to be global optimization methods, while methods which are driven
by local optima are said to be local optimization methods.

Optimizing - finding an element of the search space that minimizes (or
maximizes) the value of the objective-function

On Figure 1.1, we can see different examples of global and local optima. The points
labeled a and b are both global maxima, as they have the same value. The points c and d are
respectively local minimum and maximum, while e is the global minimum.

From all the preceding, we can provide the minimal formulation of an optimization
problem as follows:

1Obviously we sometimes want to find the maximal value that is solution of a problem, however minimizing
f (x) is equivalent to maximizing − f (x). So maximization problems can be expressed as minimization problems,
and vice-versa. Traditionally, optimization problems are usually expressed in the terms of finding a minimal value
since the two possibilities are equivalents.

8 Tom Jorquera

1.1. Basic Concepts

I
minimize f (x)

for x ∈ S

Where S is the search space of the problem and f(x) the objective-function.

1.1.1 Continuous versus Discrete Optimization

We must make an important distinction between continuous optimization (also called
numerical optimization) and combinatorial optimization. The difference between the two
categories concerns the definition domain of the variables, and consequently the nature of the
search space. For combinatorial optimization, the variables can only take a finite number of
different values (their definition domain is a finite and enumerable set), while the definition
domain of continuous optimization problem variables is, as the name implies, continuous
(thus the variable can take an infinite number of values).

This distinction has a profound impact on the nature of the problems. While the search
space of a combinatorial optimization problem is finite, a continuous optimization problem
can have an infinite number of potential solutions. Interestingly, this distinction does not
implies that continuous optimization problems are inherently harder to solve than discrete
ones. While combinatorial optimization problems can be NP-complete in the general case,
some continuous optimization problems can easily be solved in polynomial time (even large
ones). This surprising property comes from the fact that the complexity of combinatorial
optimization problems comes from the difficulty to efficiently explore the different possibles
variables states combinations, whereas for continuous optimization, the difficulty comes
more from the shape of the search space. In simple continuous optimization problems, the
search space will be very regular and the optimum easy to find, while optimization problems
with complicated, “chaotic” search spaces will be much more difficult to solve.

For the sake of completeness, let us add that there exists an optimization field which is at
the border between continuous and combinatorial optimization, named Integer programming2,
in which the variables must take integer values but are not restricted to a bounded definition
domain (making their definition set countable but infinite). An extension of these problems
are mixed-integer programs, where some of the variables are restricted to integer values and
some are not. For more informations on integer programming, the reader can refers to [Sch98].
Integer programming and combinatorial optimization are sometimes regrouped under the
discrete optimization category. However, the terms combinatorial and discrete seems to often be
used somewhat interchangeably.

In the context of this thesis, we will concern ourselves more specifically with continuous
optimization.

2in this context, “programming” must not be mistaken with computer programming but be understood as a
synonym for “optimization”. This peculiar use of the word comes from the historical origins of the optimization
field.

An Adaptive MAS for Self-Organizing Continuous Optimization 9

I

Continuous Optimization

1.1.2 No Free Lunch Theorem

The No Free Lunch (NFL) Theorems3 for optimization are important results in the field,
formalized by Wolpert and Macready [WM97]. The basic idea behind these theorems is that
no optimization method outperforms the others when regarding the class of all the possible
problems or, as the authors themselves say:

“any two algorithms are equivalent when their performance is averaged across all possible
problems.”

If an algorithm outperforms another on certain types of optimization problems, there must
be other classes of problems where this algorithm performs worse.

The NFL theorems are based on several assumptions:

3 the search space is finite,

3 the optimization algorithms never re-evaluate the same point.

The first assumption limits the scope of NFL theorems to the realm of combinatorial
optimization, as continuous optimization problems contain by nature an infinity of elements.
Indeed, it has been shown that, in the context of continuous optimization, free lunches were
possible [AT10] (but possibly at the cost of very big memory footprint). Thus this result does
not impact directly the scope of this work, but we believe that it is still a good illustration
of one of the main problematics of the optimization research field, which is that one must
often compromise between universality and efficiency. Even in the context of continuous
optimization, where the existence of free lunches has been demonstrated, it is probable that
we will never find a be-all and end-all optimization technique. This point is for example
discussed in [Yan12].

One example which can be connected to the NFL is the compromise between exploration
and exploitation. Basically, an optimization method must often make a compromise between
using the previous results to converge inside a region of the search space and exploring
the rest of the search space to find a better region. For example: some gradient-based
methods will use the evaluated points to converge toward a local optimum, but can miss a
better solution as they insufficiently explored the search space. On the opposite, some other
methods can make a thorough exploration of the search space (by partitioning or randomly
selected points), but will be slow to converge toward the exact optimum. It is often possible
to parametrize the method to tune the compromise between exploration and exploitation
regarding the nature of the problem at hand, but a relevant parametrization requires a
sufficient knowledge of the properties of the problem and therefore the parametrized method
is only efficient for the specific problem.

Of course, the NFL theorems consider all the possible problems. One could argue that
“interesting” problems (at least from an engineering point of view) are not distributed evenly
over such a space, but correspond to a subset for which some optimization methods are more
efficient than others. This is one of the reasons why optimization as a scientific research
domain still makes sense.

3The term “no free lunch” comes from the popular English saying “there ain’t no such thing as a free lunch”,
meaning that it is impossible to get something for nothing.

10 Tom Jorquera

1.2. Continuous Optimization Methods

I

This distinction has been formalized by differentiating incompressible from compressible
objective-functions. Incompressible objective-functions are random and it is thus impossible
to develop an optimization method to find the solution efficiently, since good and bad values
are randomly distributed. Of course, such “impossible” objective-functions make for the
major part of all the possible search space [Eng00].
As we said, the set of “interesting” objective-functions, or even the set of real-world related
ones, is much much more restrained. And for this specific category, some optimizers are
better than others. However, as we will see in the next sections, the variety of “interest-
ing” optimization problems is still important enough to have resulted in multiple specific
optimization techniques.

One consequence of the NFL is that selecting an efficient optimization method for a given
problem requires to have at least a minimum insight on the properties of the problem. No
algorithm can be deemed to be the most efficient in the general case.

On a side note, it can be added that, in addition to the case of continuous optimization,
the possible existence of free lunches (i.e. there exist optimization methods strictly better than
some others) has been demonstrated for coevolutionary [WM05] as well as multi-objective
[CK03] optimization problems.

1.2 Continuous Optimization Methods

As we have seen at the end of the last section, optimization methods have to make various
compromises regarding applicability versus efficiency. A great number of methods exists
in the literature, from general methods applicable to a variety of optimization problems to
very specialized methods designed to be efficient in a specific context. These methods can
be categorized by the type of problems they aim to solve or some inherent properties of the
method.

Some possible criteria to discriminate based on the type of problem:

3 can we obtain derivatives of the functions defined in the problem?

3 is the problem linear (or possibly quadratic)?

3 is the problem convex?

For the method in itself:

3 is the method able to take constraints into account?

3 does the method provide a global solution or a local one?

3 is the method deterministic or stochastic?

Based on the shape of the search space and our requirements regarding the method, we
must try to choose the most adequate optimization method. As always, the more information
known regarding the problem, the more we will be able to select a specialized method with
a great efficiency. If very few information is known, it could be necessary to use black-box
optimization methods, that is methods that do not make any assumption regarding the nature

An Adaptive MAS for Self-Organizing Continuous Optimization 11

I

Continuous Optimization

Linear

Numerical
Optimization

Local Global

With Derivative Derivative-Free Exact StochasticHeuristic

Figure 1.2: Types of continuous optimization methods.

of the problem. These techniques can suffice in themselves to get a good-enough result, or
can be used as a prelude of more specialized techniques if enough information is gathered.

A rough proposal of organization of the different types of continuous optimization can be
seen on Figure 1.2.

Presenting all the continuous optimization techniques would be far outside the scope of
this work. In the next sections we will focus on presenting briefly the different optimization
categories we identified on Figure 1.2. We will reference some of the most representatives
techniques to illustrate this presentation, but without going too much into the details of the
techniques.

1.3 Linear Optimization

Linear optimization focuses on the solving of problems where the objective-function and
constraints are linear (that is, f (x + y) = f (x) + f (y) and f (ax) = a f (x)), and the search
space convex.

A convex search space is a set where all the lines segments linking the points of the set are
fully contained inside the set (if it is not the case, the set is said to be concave). An illustration
of the difference between convex and concave search spaces is shown on Figure 1.3.

A linear problem with n variables and m constraints can be expressed as:

min a1x1 + a2x2 + ... + anxn

subject to xi ≥ 0, ∀i ∈ 0, n

a11x1 + a12x2 + ... + a1nxn + b1 ≥ 0

...

am1x1 + am2x2 + ... + amnxn + bm ≥ 0

12 Tom Jorquera

1.4. Local Methods

I

(a) Convex search space (b) Concave search space

Figure 1.3: Convex and concave search spaces (from Oleg Alexandrov).

This kind of problems is the most basic one. The most well-known method to solve linear
problems is the Simplex algorithm [Dan98], published by Dantzig in 1947 (based on the work
of Leonid Kantorovich). The Simplex algorithm is considered to be the first formal algorithm
to solve a continuous optimization problem and to be one of the founding works of the field.

The basic idea of the simplex algorithm take advantage of the fact that the solution space
of such problems is a convex polyhedron, for which the optimal solution is necessarily on
one of its vertices. Another property is that a vertex which is not the optimal solution will
have at least an edge leading toward a better vertex. The simplex algorithm starts on one of
the vertices, and tries to follow an edge to a vertex which improves the objective-function.
The algorithm iterates until it has found a vertex with no edge leading toward a better point
(the optimal solution) or until it reaches an unbound edge (in this case the problem is not
bounded).

While the simplex algorithm is considered to be very efficient for most cases, some
alternatives have been proposed. The most noteworthy is the interior point method and its
derivatives. Contrary to the simplex method, this method actually traverses the interior of
the solution space (hence its name). The original method proposed by Karmarkar [Kar84]
travels through the search space by iteratively finding the best solution over a restricted
region delimited by a sphere around the current point.

1.4 Local Methods

Unconstrained local optimization methods concentrate on finding local optima either
because the search space is too big or to complex to find a global optimum in a reasonable
time, or because we prefer to quickly find a good enough solution. Moreover, if the search
space is convex, the local optimum is also the global optimum. In such context local methods
can be an easy mean to obtain the best solution.

1.4.1 Using Derivatives

If the derivatives are available, it is possible to propose very efficient optimization tech-
niques to converge toward a local optimum.

An Adaptive MAS for Self-Organizing Continuous Optimization 13

http://commons.wikimedia.org/wiki/Category:Files_by_User:Oleg_Alexandrov_from_en.wikipedia

I

Continuous Optimization

In some cases, even if the derivatives are not available, it is possible to obtain an ap-
proximation of the derivatives, using for example a finite difference method. The basic idea
of finite difference is to estimate the derivative from the ratio between the variation of the
input and the variation of the output of the function. Basically, if we make the following
assumption:

f (x + d) ≈ f (x) + d f ′(x)

then we can estimate the derivative as follow:

f ′(x) ≈ f (x + d)− f (x)
d

1.4.1.1 Without Constraint

Methods of this kind can be mostly classified in two broad families: line search and trust
region. Both families are iterative approaches but differ in the information they use to select
the next search point.

The common idea of these methods is, from a random starting point x0, to iteratively
evaluate a new point using a direction and a step size. By adjusting the way the direction
and step size are chosen, we can obtain a whole range of algorithms with varying behaviors.

Formally, from the point xi, the new point xi+1 is calculated with:

xi+1 = xi + sidi

where di is the direction vector and si the step size coefficient.

Line search Line search is the most basic approach. It first determines which direction
would improve the objective function, then decide of a step size to move toward it. Some
of the most well-known linear search methods are gradient descent, Newton’s and Quasi-
Newton methods [DS83]. The gradient method simply uses a step size proportional to
the value of the gradient. The Newton’s and Quasi-Newton methods however try to find
a solution to the equation ∇ f (x) = 0, where ∇ f (x) is the gradient of f . The Newton’s
method uses the gradient and the Hessian matrix of f to estimate a good step size, while
Quasi-Newton methods avoids the disadvantages of using the Hessian (which can involve
costly operations), for example by replacing it with an approximation based on the variations
of the gradient.

Trust region Trust region methods use the neighborhood of the current point to approx-
imate the shape of the objective-function. This approximation is then used to find the
minimum in a localized region around the current point. Contrary to line search methods,
these methods start by selecting a step size (the size of the region around the current point)
and choose the direction after. For example, the Levenberg-Marquardt algorithm [Lev44;
Mar63], whose primary application is least squares problems, uses the Jacobian matrix
conjugated with a damping factor to iteratively refine the approximate functions.

14 Tom Jorquera

1.4. Local Methods

I

1.4.1.2 With Constraints

One of the first proposal for solving constrained problems with derivative is a generaliza-
tion of interior point (presented in 1.3). The idea is that a linear function with a non-convex
search space can be transformed into a linear function over a convex search space (which is a
requirement for applying interior point techniques), using self-concordant barrier functions.

A barrier function is a function whose value increases to infinity when its input ap-
proaches a fixed boundary. The idea is to replace the constraint with a barrier function which
is composed to the objective-function. The barrier function is thus used as a penalty for
points that violate the constraint.

For example, taking the following constrained optimization problem:

minimize f (x)

subject to x > 0

Suppose we are provided with a barrier function bc(x) whose value increases toward in-
finity as x decreases toward 0 (limx→0+ bc(x) = +∞). We can now use the new unconstrained
optimization problem:

minimize fobj(x) + bc(x)

Another method, that dominated for some time this part of the continuous optimization
field, is Sequential Quadratic Programming (SQP) [BT95]. SQP proposes to replace the
problem to solve by a sequence of quadratic problems, usually more easily solvable. SQP
is based on a very powerful result of continuous optimization, the Karush-Kuhn-Tucker
(KKT) conditions [KT51]. The KKT conditions are necessary conditions for a solution x∗
in a nonlinear optimization problem to be a local optimum. They state that for x∗ to be a
local optimum to an optimization problem with i inequality constraints gi and j equality
constraints hj, there must exist some µi and λj such as:

∇ f (x∗) + ∑ µi∇gi(x∗) + ∑ λj∇hj(x∗) = 0
gi(x∗) ≤ 0 ∀i
hj(x∗) = 0 ∀j
µi ≥ 0 ∀i µigi(x∗) = 0 ∀i

The SQP can be viewed as an equivalent of Newton’s method to the KKT conditions of
the problem.

1.4.2 Derivative-Free

Sometimes we cannot use derivatives in the optimization process, either because the
derivatives are not available or too costly to compute.

A very popular method is the Nelder-Mead algorithm [NM65]. This algorithm places a
simplex4 on the search space and applies to it a sequence of transformations by moving its

4The concept of simplex is a generalization of the concept of triangle in arbitrary dimensions. A triangle

An Adaptive MAS for Self-Organizing Continuous Optimization 15

I

Continuous Optimization

old worst point

old simplex

new simplex

next simplex

new worst point

new point

Figure 1.4: Illustration of the Nelder-Mead algorithm.

edges.

At each iteration, a new test point is calculated (for example the symmetric of the worst
vertex of the simplex regarding the gravity center of the others points). If this point is better
than every vertices, then the simplex is stretched toward it. If this point is worse than the
current vertices, then we suppose we are stepping over the valley which contain an optimum.
In this case the simplex is contracted to be able to explore the valley. Else, we simply replace
the worst vertex by the new point. The iterations stop when the simplex has reached a
specified size.
An illustration of the Nelder-Mead algorithm is shown on Figure 1.4.

Several derivative-free algorithms interpolate the objective-function with a simpler one.
These methods starting with several evaluation points of the objective-function to build a
simpler function on which it is possible to apply a known optimization method. Based on
the result of the optimization, we can update the interpolation model and reiterate. Some
possible interpolation methods include various polynomial interpolation methods, kriging
etc.

1.5 Global Methods

While local optimization methods aim only for an optimum into a limited part of the
search space, global optimization methods aim for the global best solution of the problem.
These methods concentrate on providing strategies to explore the search space.

Depending on the nature of the problem, it may be impossible to guarantee that the best
solution will be found by any means other than a complete exploration of the search space
(which is in itself an impossible task in the context of continuous optimization).

For example, suppose the following problem:

is a simplex in 2 dimensions, a tetrahedron a simplex in 3 dimensions. It should be noted that the Simplex
algorithm, presented in 1.3 does not actually use simplices during solving, despite its misleading name, but is
simply inspired from the concept.

16 Tom Jorquera

1.5. Global Methods

I

Minimize f (x) =

{
0 if x = 1× 10−9

1 otherwise

There is no efficient strategy to find the global optimum to such a problem (unless
knowing the equations, and thus the solution, beforehand).

Consequently, obtaining the global optimum of an optimization problem with certainty
will be possible or not depending on the properties of the problem. As with local optimization
methods, several kinds of approaches have been proposed to solve problems with different
properties.

1.5.1 Exact Methods

These methods aims at providing a guarantee about the optimality of the solution. They
cannot be applied to every optimization problems, as they need to use some properties of the
problem to prove that the solution found is a global optimum.

For example, as we said before, if an optimization problem is convex then a local solution
is also a global solution. Consequently, for convex problems local optimization methods can
be used with the guarantee that the solution found will be the best one.

As with linear programming, a specific class of problems belongs to the field of Quadratic
Programming (QP), and its extension Quadratic Constrained Quadratic Programming (QCQP).
QP concerns (non-convex5) problems where the objective-function is quadratic (that is, a
polynomial of degree 2) and all the constraints are linear. QCQP, as its name implies, concerns
quadratic objectives and constraints.

Several adaptations of the Simplex method (presented is 1.3) for QP have been proposed
(see for example [Wol59; Dan98; PW64]).

It is also very common to use relaxation techniques (Reformulation-Linearizion Techniques
or Semidefinite Programming) to approximate the quadratic problem with a linear one. A
widespread technique is to use a Branch and Cut, starting by replacing each non-linear term
of the problem by a (linear) variable. For example, the term xixj would be replaced by the
variable vij. For each replacement, a new constraint is added to maintain the consistency
of the solution. In our example, the new constraint would be vij = xixj. Then these new
constraints are themselves replaced by linear approximations. To see more details on the
different relaxations strategies, refer to [Aud+00].

1.5.2 Heuristic Methods

When exact methods are too costly or non-applicable, it is often sufficient to get a good
enough solution. To this end it is possible to use heuristics to reduce the search space and
ensure we obtain a solution in a reasonable time.

For example, a simple strategy can be to run a local optimization technique several times
with different initialization points, in order to increase the coverage of the search space.

Expanding on this strategy is the Tabu search metaheuristic [Glo89]. The idea of Tabu
search is to execute the same algorithm several times. To avoid converging toward the same

5if the problem is convex, then we can use simple convex optimization techniques

An Adaptive MAS for Self-Organizing Continuous Optimization 17

I

Continuous Optimization

point, the previous solutions are memorized and are not allowed to be revisited. Thus the
method has less chances to be quickly trapped in local optima. The Tabu search can be
extended with several levels of memory to influence the search toward the most interesting
regions of the search space.

Another class of heuristics introduces randomization into the search process in order to
obtain a good coverage of the search space. These strategies are said to be stochastic.

A very simple example of stochastic method is the Monte-Carlo method [RC04]. We start
by choosing a point at random. Then we iteratively draw new points around the old one
until we cannot improve the solution. Then we start again from another random point of the
search space and continue until we reach an arbitrary termination criterion. This method is
very easy to put in practice, but can be quite costly in number of evaluations.

Another well-known technique is Simulated Annealing [KJV83]. This method is inspired
from the annealing technique in metallurgy used to control the heating and cooling of a ma-
terial in order to increase its properties. Simulated annealing associate a global temperature
and an energy measure to the state of the system (which represent the objective-function).
Consequently the goal of the system is to minimize its energy. At each step, the method
considers moving to one of the neighbors of the current point. The higher the temperature
of the system, the more the system is susceptible to move, even if the neighbor is worse
than the current point. As the temperature decreases, the system will favor more and more
consistently solutions that decrease its energy. The temperature of the system is reduced over
time following a specific cooling schedule. For example the temperature could be decreased
a each step, or could be reduced only when the system reached an equilibrium.

Some others stochastic techniques which can be applied are population-based optimiza-
tion. Population-based optimization is a very prolific and diversified field, whose algorithms
are often inspired from the observation of natural populations behavior. The underlying
principle of this kind of algorithm is the use of a population of entities which are spread
within the search space, with specific strategies in order to iteratively progress toward the
solution. These strategies involve transformations applied to the entities that compose the
population (moving, creating or destroying or otherwise altering them).

1.5.2.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) are based on a Darwinist selection process. The main idea
is to maintain a population of solutions which is iteratively improved by selecting, crossing
and mutating the best individuals in regard of a given fitness function. Most EA are based on
the algorithm shown in algorithm 1.1.

Genetic algorithms [Hol92] are by far the most often used type of EA in optimization. In
the context of genetic algorithms, each individual entity is defined by a specific genotype,
which represents a possible solution to the problem. Like we said previously, a global fitness
function is defined, which is used to evaluate the solutions represented by these individuals.

Regarding a continuous optimization problem, the genotype of an entity would be a
set of values assigned to the inputs of the problem, while the fitness function would be the
objective-function.

The optimization process iterates over two phases: selection and generation of a new

18 Tom Jorquera

1.5. Global Methods

I

Algorithm 1.1: Evolutionary Algorithm Pseudocode

generate initial population
repeat

evaluate fitness and select best-fit individuals
produce offspring based on selected individuals
evaluate fitness of offspring
replace least-fit population with offspring

until termination condition reached

population. In the selection phase, a subset of the current population is selected to be used in
the generation of the new population. In the most basic approaches, the selected individuals
are the ones which obtain the best scores on the fitness function. The second phase generates
a new population, based on the selected individuals. To produce the new individuals, a set
of biology-inspired genetic operators is used. Two of the most common genetic operators are
crossover and mutation. The crossover is the creation of a new individual, whose genotype
is based on the combination of two randomly selected “parents”. The mutation consists in
randomly changing a part of the genotype of an individual.

Together, these two operators can be seen as representatives of the exploitation versus
exploration dilemma. The crossover operation is an attempt to exploit the best solutions
found so far, while the mutation is done to maintain diversity in the population.

Most genetic algorithms proposals work on variations on these two phases. For example,
some techniques will select not only the best fitted individuals, but also a small part of low
fitted ones in order to increase the exploration of the search space. Some variants also modify
the genetic operators or introduce additional new ones. For example it is possible to do the
crossover using more than two parents, or to introduce the notions of groups and migration.

1.5.2.2 Swarm Algorithms

Swarm algorithms focus on the decentralized exploration of the search space by a popu-
lation of entities (commonly called agents or boids). These entities usually have only a local
perception of the search space and individually decide how to move using simple rules.

Particle Swarm Optimization (PSO) [KE95] is inspired from the flocking behavior of
social animals (such as birds, fishes or bees). PSO consists of a swarm of particles initially
spread across the search space. Each particle i can perceive its neighborhood and moves
according to its current position xi and velocity vector −→vi . During solving, each particle
memorizes the best solution it found so far x∗i . Based on this information, a global best x∗g
is calculated and provided for each particle for the next iteration. At each step, a particle
updates its velocity based on the current velocity, its local best value and the global best value
found. Then it moves according to its current position and velocity. The influence of these
various parameters can be modulated using the coefficients w, representing the inertia, cl

representing the influence of the local best solution and cg, representing the influence of the
global best solution.

Algorithm 1.2 presents the principle of an iteration of PSO.

An Adaptive MAS for Self-Organizing Continuous Optimization 19

I

Continuous Optimization

Algorithm 1.2: PSO iteration

foreach particle do
rl , rg ← random numbers ∈ [0, 1]−→vi (t) = w−→vi (t− 1) + clrl(x∗i (t− 1)− xi(t− 1)) + cgrg(x∗g(t− 1)− xi(t− 1))
xi(t) = xi(t− 1) +−→vi (t)
if xi(t) better than x∗i then

x∗i = xi(t)
end

end
x∗g = max(x∗i)

1.5.2.3 Population-Based Algorithms for Optimization in Dynamic Environments

A special case of optimization is optimization in a dynamic environment. In this kind of
problems, the objective-function is likely to change with time. To avoid confusion, optimiza-
tion in dynamic environment is distinct from dynamic programming (another optimization
field not addressed here) in the fact that the changes of the objective-function are not known
beforehand. It is thus not possible to anticipate these changes during solving. Many optimiza-
tion techniques fail to solve this kind of problems as they are not meant to take into account
these dynamics. These problems require optimization techniques to be able to both find a
moving optimum and to follow it when it changes.

Population-based algorithms tackle the problem of a dynamic environment by maintain-
ing a diverse population of solutions. Of course this kind of algorithm does not avoid the
dilemma of exploration versus exploitation, and must usually choose between maintaining
a high diversity of solutions and concentrating the population around the most promising
regions. Most of these techniques include specific parameters to adjust the solving process
toward more exploration or more exploitation (for example the coefficients regarding current
velocity, local and global optima in PSO). The choice of finding the best parameters is once
again handed down to the person applying the method.

Another inconvenient of population-based approaches is the high number of evaluations
they require. Indeed, each individual will need at least one evaluation of the whole problem.
If the problem is very costly to evaluate, this kind of method may not be worth considering.

Finally, this kind of method often has some difficulties to scale with the complexity of the
problem. Genetic algorithms will often have difficulties solving problems where the search
space is very large, and swarm algorithms will present difficulties when the search space has
a high number of dimensions or with chaotic topologies.

1.6 Analysis of Continuous Optimization

This overview of continuous optimization illustrates how the different optimization
techniques range from very efficient but highly specialized methods to broad scope methods
with slower and more costly strategies. We have seen how the intuition provided by the
NFL theorems is illustrated by the progression of the optimization techniques in general
applicability and complexity.

20 Tom Jorquera

1.6. Analysis of Continuous Optimization

I

An interesting observation is how specialized methods can concentrate on exploitation
of the solutions, while generic methods are concerned with exploration of the search space.
Indeed, the more we know about the structure of the problem, the easier it is to select a new
search point. When lacking knowledge about the topology of the system, we need to be more
concerned about exploring the search space.

From this basic compromise we can see how continuous optimization has given birth
to such a plethora of methods, as every optimization technique is torn between this basic
compromise.

All the methods we presented in this chapter share an inherent limitation due to the
way they handle the problem. By using a centralized algorithm, with a global view of the
problem, in charge of the evaluating each point and deciding which new point to explore,
these approaches require a complete re-evaluation of the entire problem at every iteration.
In the next parts we will see increasingly complex problems, where the size of the problem,
its topology and additional concerns not strictly related to the pure optimization make a
complete evaluation of the problem increasingly costly, up to a point where applying methods
such as the one we have presented in this chapter becomes too prohibitive.

An Adaptive MAS for Self-Organizing Continuous Optimization 21

2 Multi-Objective Optimization

Multi-Objective Optimization (MOO), also called multi-criteria optimization, departs
significantly from previous categories of optimization in the fact that you have to consider
multiple objective functions instead of only one. A main aspect of MOO is the way to
conciliate these objectives, that are usually contradictory. An example of real-world everyday
MOO problem could be choosing the mean of transportation for a travel, trying to find
a balance between speed and cost. Airplane is the fastest way of transportation, but is
expensive. While car is slower, it is cheaper (especially if several people share the car). Train
is slower than plane, more expensive than car, but can preferred as the best compromise.
However, some solutions are strictly worse than others (in our example, renting an helicopter
would probably be both more expensive and slower than buying a seat on a commercial
airplane).

From this example we can see that, for an MOO problem, there is rarely a clear-cut “best”
solution. And, more importantly, that even some solutions which are not optimum for any of
the objectives can be deemed satisfying compromises. Only when each objective is completely
independent, or when no objective is contradictory to another, then an MOO problem can be
handled as a set of separated mono-objective optimization problems. A solution vector which
would be optimum for each objective is sometimes called utopia point, or shadow minimum,
and is used as a reference comparison in some of the MOO techniques we present.

The formulation of a MOO problem does not differ significantly from the formulation of
a “classical” optimization problem, the only difference being that instead of minimizing one
objective function, we aim to minimize several ones:

minimize f1(x), f2(x), ..., fn(x)

for x ∈ S

MOO problems are quite a radical departure from previous optimization problems we
have seen. Many approaches have been proposed, the majority of which can be separated in
two categories: a priori and a posteriori approaches. A priori approaches aim at discriminat-
ing between the objectives before the optimization process. This often consists in combining
the different objectives into a single one, before applying a classical optimization method on
the new, aggregated objective.
On the opposite, a posteriori methods try to provide a set of efficient solutions among which
the decider will choose. A priori approaches are considered easier, but not very efficient,

An Adaptive MAS for Self-Organizing Continuous Optimization 23

I

Multi-Objective Optimization

whereas a posteriori approaches provide more diversity of solutions as well as more insight
about the nature of the problem.
A third category can also be considered: the interactive methods. Basically, these methods
iterate between decision and search phases. For example, an interactive method could work
by quickly providing intermediate solutions to the decision-maker, which would in return
refines the search using them.

We will now see some of the strategies that have been proposed to deal with such
problems. A recommended reading for the interested reader is the very complete overview
by Marler et al. in [MA04].

2.1 A Priori Methods

A priori methods usually propose a strategy to make possible the use of classical single-
objective optimization methods on the problem. This may be done by discriminating between
the different objectives or by aggregating them into a new objective which will be used for
the optimization.

2.1.1 Objectives Aggregation

The first approach is to transform the MOO problem back to a mono-objective optimiza-
tion problem, by aggregating the different objectives into one. This can be expressed as follow:
fg = aggr(f1, f2, ..., fn), where f1, f2, ..., fn are the original objectives and fg the aggregated
one, which will be used with classical mono-objective optimization methods.

Concerning the choice of the aggregation function, different strategies can be used. The
simplest strategy is to use a classical function such as addition, multiplication, mean, max or
min of the objectives, and variations of the preceding (exponential sum, ...). These methods
present the major drawback of requiring the aggregated values to be comparable. Going back
to our travel example, is it relevant to simply add together duration and cost?

A slightly more sophisticated way is the weighted sum method, where a coefficient is
attributed to each objective before adding them [MA10] :

f (x) =
n

∑
i=1

wi fi(x)

where wi are the coefficients representing the relative preferences between the objectives.

This method allows to express a preference between different objectives, as well as
bringing different objectives to a comparable scale. However, one now has to decide the
values to select for the coefficients.
Furthermore, this method can hide some information concerning the solution, for example
an extremely poor result in one of the objectives, compensated by small improvements in all
the others. The method also presents some limitations in the fact that it does not guarantee
that the final solution will be an acceptable point, nor that a continuous variations of the
points will leads to a continuous distribution of the solutions. It is also not possible to obtain
solution points situated in a non convex region of the solution set [MA04].

24 Tom Jorquera

2.1. A Priori Methods

I

2.1.2 Lexicographic Method

In this iterative method, the objective-functions are arranged and optimized by order of
importance. The result of the optimization at a given step becomes a constraint to satisfy for
the following steps.

Formally, the problem becomes an ordered set of optimization problems, where each
iteration can be expressed as follow:

min fi(x)

subject to f j(x) ≤ f j(x∗j)

for j =1, ..., i− 1

It is also possible to replace inequalities by equality constraints [Sta88]. Another variation,
sometimes called hierarchical method [Osy84], introduces a constraint relaxation coefficient δ

where the new formulation of the constraints becomes:

f j(x) ≤
(

1 +
δj

100

)
f j(x∗j)

2.1.3 ε-constraint Method

The ε-constraint method [HLW71] proposes to change the expression of the problem by
keeping only one objective (the one deemed the most important) and transforming the others
into inequality constraints.

For example, the problem
min f1, f2, ..., fn

where f1 is deemed the most important objective would be transformed in

min f1

subject to f2 ≤ ε2, ..., fn ≤ εn

where ε2, ..., εn must be chosen by the designer. Depending of the selection of ε2, ..., εn,
there is a risk to obtain a formulation where no feasible solution exists. See [MA04] for a
discussion about the different proposed methods for selecting ε.

2.1.4 Goal Programming

The idea of Goal Programming (also called Target Vector Optimization) [CC57] is to assign
to each objective an associated goal to reach. Each objective can be over- or underachieving
its goal, allowing the designer to provide a rough idea of the initial design goals.

The new objective is to minimize the total deviation
n

∑
i=1
| fi − gi| where gi is the goal

associated to objective fi.

An Adaptive MAS for Self-Organizing Continuous Optimization 25

I

Multi-Objective Optimization

Goal Programming is very easy to use and quite popular, and can work even when the
designer provides some unreachable goals, but give no guarantee about the optimality of the
solution.

2.1.5 MinMax Method

This method uses the separately attainable minima of the objectives (the so-called utopia
point) and try to minimize the maximum deviation of the objectives relative to these minima
[Osy84]:

min max

(
fi − f 0

i

f 0
i

)

where f 0
i represents the separately attainable minimum of the objective fi.

This method can also be used similarly to Goal Programming, where the separately
attainable minima are replaced by goals given by the designer.

A variant of this method, called weighted min-max, or weighted Tchebycheff method,
uses the following formulation:

min f = max wi| fi − f 0
i |

where wi are coefficient provided by the designer.

2.1.6 Analysis of a priori methods

A priori methods provide a simple and efficient way to tackle the problem of multiple
objectives, as they allow to reduce the problem to a mono-objective one. However, a drawback
of these methods is the need for the designer to have a good knowledge of the problem, to
know the correct way to combine/compare the different objectives functions. In the general
case, the designer may not have enough experience or information to make such decisions.

In the case where the designer would have enough knowledge to meaningfully use such
methods, the introduction of this knowledge may introduce a bias in the resulting solution,
orienting the optimization process toward “standard” solutions at the expense of possible
non-conventional ones.

Moreover, aggregation techniques tend to break when the objectives are not comparable,
requiring once more knowledge from the designer to introduce adjustment coefficients in
order to “re-equilibrate” the aggregation function.

2.2 A Posteriori Methods

We have seen that, while convenient, a priori methods can be quite restrictive. By choosing
beforehand a way to aggregate the different objectives, we lose in diversity of solutions and
influence the result of the optimization process.

26 Tom Jorquera

2.2. A Posteriori Methods

I

2.2.1 Pareto Dominance

A radically different approach has been proposed, using the concepts of Pareto dominance
and Pareto optimality. These concepts were originally developed in economical sciences,
first by Francis Edgeworth and later Vilfredo Pareto [PPS72]. The initial application of the
concepts was to propose a minimal definition of “efficiency”, regarding allocation of resources
inside an economical system.

The main idea is define as Pareto efficient (Pareto optimal) a state where it is impossible to
improve the resources allocation for an individual without worsening the situation of at least
another1.
Conversely, if from a system state A it is possible to find a new state B where at least one
individual’s situation is improved without worsening the situation of another, the state A
will be said to be Pareto inefficient. The state B will be said to dominate the state A in terms
of Pareto optimality, and the passage from A to B will said to be a Pareto improvement. This
relation of Pareto dominance is usually noted ≺.

Pareto-dominance - Given A and B two vectors describing resources
allocations to different individuals in a system, A ≺ B ⇔ (∀i Ai ≤
Bi ∧ ∃j Aj < Bj).

Note that, to complicate a little the understanding of this notion, the definition of domina-
tion depends of whether we actually want to maximize or minimize the resource allocation. In
the previous economical definition we wanted to maximize resources allocation, so A ≺ B
reads “B dominates A”. If we want to minimize the allocation, the meaning is inverted and
A ≺ B reads “A dominates B”.

Based on this relation of dominance, it is possible to provide a definition of Pareto-
optimality.

Pareto-optimality - A solution vector that is not dominated by any other
possible solution is said to be Pareto-optimal.

Pareto front - the set of Pareto-optimal solutions.

It is also possible to classify the solutions by ranks: a solution which is dominated by no
other is said to be of rank 0 (and to be Pareto-optimal). A solution which is dominated by a
solution of at most rank 0 is said to be of rank 1 and so on.

These definitions of dominance and optimality can be used to characterize the possible
solutions of MOO problem. In this case, the problem is not to find an optimal solution
anymore, but to find the Pareto front of the problem.

An illustration of a Pareto front can be seen on figure 2.1. The elements A and B are
Pareto-optimal, while C is not, being dominated by A and B.

1As a remark, these definitions of efficiency and optimality do not give any information about the fairness of
the allocation, or the well-being of the involved parties. From this point of view, a monopolistic situation where
one individual would control all the available resources is as optimal as a situation where all the resources are
equally divided between the individuals.

An Adaptive MAS for Self-Organizing Continuous Optimization 27

I

Multi-Objective Optimization

C

Pareto

A

B

f2(A) < f2(B)

f1

f2

f1(A) > f1(B)

Figure 2.1: Illustration of the notion of Pareto Front (CC-BY-SA Johann Dréo).

2.2.2 Multi-Objective Evolutionary Algorithms

A popular strategy to find the Pareto front is to use specialized variants of population-
based heuristics methods (presented in section 1.5.2). One of the most widespread approaches
concerns Multi-Objective Evolutionary Algorithms (MOEA).

MOEA are variants of EA specialized in the simultaneous tracking of several solutions,
instead of providing a single solution. Historically, MOEA are divided in two main categories,
based on whether or not they use elitism mechanisms, with some consensus concerning the
superiority of elitist algorithms.

Non-elitist techniques often have trouble to converge toward the Pareto front, as well as
to keep a good optimum diversity and to spread on the front. To remedy that issue, elitist
algorithms propose various additional mechanisms:

3 maintaining an external “archive” population containing the optimum found so far
3 using clustering techniques to spread the solutions among the Pareto front
3 introducing an additional preferential bias toward non-dominated solutions

MOEA propose an interesting Nature-inspired mechanism for solving MOO problems.
By maintaining a population of candidate solutions and using selection pressure mechanisms,
they make possible a throughout exploration of the Pareto front.
The compromise between exploration and exploitation will be determined by the parametriza-
tion of the different genetic operators and the selection/crossing process. While this aspect
can prove to be advantageous for the potential flexibility it brings, it is often difficult to guess
what are the relevant parameters values. Consequently it can be necessary to iterate the
optimization process in order to manually fine-tune the parameters.

A major limitation of these methods is their potential computational cost. Such algorithms
need to evaluate a relatively large number of candidates in order to create a good population
of solutions. Computing all the candidate solutions can be prohibitive for computationally
expensive problems.

It has also be noted in [CK07] that many MOEA have poor scalability performances in
regard of the number of objectives, often having troubles to handle more than five objectives.

28 Tom Jorquera

http://en.wikipedia.org/wiki/File:Front_pareto.svg

2.3. Analysis of MOO

I

This degradation of performances is attributed to the combined factors of:

3 the exponential complexity increase of the procedures in regard of the number of
objectives

3 the increase in number of non-dominated solutions caused by the additional objectives
3 the limited size of the archived population in regard to the increasing number of

candidates

2.3 Analysis of MOO

We have seen how a new concern, taking in account several objectives, has created the
need for new optimization strategies. Interestingly, many of these MOO-specific methods
do not concentrate on the optimization process in itself, but on providing strategies to apply
classical optimization techniques.

Some of these methods propose to aggregate the objectives, in order to be able to directly
apply mono-objective optimization techniques. However these methods require the expert to
make some choices concerning the priorities of the objectives before having the possibilities
to look at the different alternatives.
Others approaches use population-based algorithms in order to maintain a set of solutions.
However these approaches, already quite costly in the mono-objective case, require even
more evaluations of the problem.

We will see in the next chapter how these methods are still insufficient to handle the most
complex continuous optimization problems, due to the very fundamental assumption they
make by considering the objective-function(s) to be trivial to evaluate. We will now see a
kind of optimization problems which are so complex that a single evaluation of the problem
is considered a cost, and some methods which have been proposed to handle such problems.

An Adaptive MAS for Self-Organizing Continuous Optimization 29

3 Multidisciplinary Optimization

Multidisciplinary Design Optimization (MDO), often abbreviated Multidisciplinary Opti-
mization, concerns the optimization of complex systems which involves several interacting
disciplines. Each discipline in itself can contain this own variables, objectives and constraints.
These problems often involve several of the optimization problematics we examined in the
previous chapters (non-linearity, multiples objectives and constraints, uncertainties etc.) and
are usually too complex to be handled by classical optimization methods for several reasons.
Evaluating the global function of the problem is considered to be expensive, as it involve
complicated models, requiring extensive calculus. The optimization problem usually contains
not just contradictory objectives, but whole conflicting disciplines. The complexity of the
problem is also increased by the fact that the different parts of the problem are interdependent
and can potentially add several layers of intermediate calculus, making difficult to estimate
the impact of the design variables on the different criteria.
In this regard, we can say that MDO problems regroup and amplify all the difficulties
encountered with the previous types of optimization problems.

These kinds of problems are commonplace in the industry, especially in complex systems
design such as aeronautics and aerospace engineering, where parts of the design are often
done by different experts teams. For example, designing an aircraft can be formalized as a
MDO problem involving several disciplines such as mechanics, aerodynamics, acoustics etc.
(see Figure 3.1).

Figure 3.1: Examples of aeronautics disciplines (source unknown, partially based on the work
of C. W. Miller Dream Airplanes).

An Adaptive MAS for Self-Organizing Continuous Optimization 31

http://thehuwaldtfamily.org/jtrl/research/Airplane%20Design/Dream%20Airplane%20Systems%20Bias.pdf

I

Multidisciplinary Optimization

To handle such complex systems, most strategies propose to decompose the problem into
several sub-systems of lesser complexity. Concerning engineering, several decomposition
strategies have been proposed[KL95]:

3 Product (also called object) decomposition, based on the physical components of the
system. This kind of decomposition is not always adequate and often subjective.

3 Process (also called sequential) decomposition, based on the workflow of elements/informations
involved into the design process. This decomposition is most adequate when the design
process is linear.

3 Domain (also called aspect) decomposition, based on the knowledge domains, the
disciplines, involved. This kind of decomposition is the basis of MDO methods.

The AIAA MDO Technical Committee proposed the following definition of MDO1 [AA91]:

“A methodology for the design of complex engineering systems and subsystems that
coherently exploits the synergism of mutually interacting phenomena.”

MDO methods are not optimization methods per se. Instead they focus on providing an
optimization strategy for optimizing the different disciplines while maintaining a global
coherence. In fact, the optimization of the disciplines is done using classical optimization
methods such as the ones presented before. In this regard, MDO methods could be seen
as optimization meta-methods, or methodologies, as they provide methods to best apply
optimization methods to complex problems. Martin and Lambe [ML12] note many of the
terms that have been used in the literature: “architecture”, “method”, “methodology”,
“problem formulation”, “strategy”, “procedure” or “algorithm”.

Alexandrov and Lewis illustrated their discussion on Collaborative Optimization [NMRM00]
with the following theoretical test case:

a1 = A1(s, l1, a2)

a2 = A2(s, l2, a1)

minimize f (s, a1, a2)

subject to g1(s, l1, a1) ≥ 0

g2(s, l2, a2) ≥ 0

It can be noted that this formulation does not differ from the standard optimization
problem formulation. Indeed, as noted by Martin and Lambe [ML12]:

“If we ignore the discipline boundaries, an MDO problem is nothing more than a
standard constrained nonlinear programming problem: we must find the values of the
design variables that maximize or minimize a particular objective function, subject to the
constraints.”

1https://info.aiaa.org/tac/adsg/MDOTC/Web%20Pages/aboutmdo.aspx

32 Tom Jorquera

https://info.aiaa.org/tac/adsg/MDOTC/Web%20Pages/aboutmdo.aspx

3.1. Mono-Level Methods

I

A very common strategy used by most MDO methods is to reformulate the problem to
decouple variables which are shared among the disciplines. For example, the following
optimization problem:

Minimize f (f1(x), f2(x))

(where f1 and f2 represent two disciplines depending on x)

could become:

Minimize f (f1(x1), f2(x2))

subject to x1 = x2

The shared variable x has been replaced by two independent variables x1 and x2, and a
new constraint x1 = x2 has been added to ensure the consistency of the design.

Several specific terms are in use in the domain of MDO:

3 Design variable: a variable of the problem which can be chosen by the designer. The
goal of the optimization process is to find good values for the design variables of the
problem. A design variable is said to be local (or private) if it is relevant to only one
discipline, and shared (or public) if it is used by several of them.

3 Discipline Analysis: The evaluation of the output variables of a single discipline, based
on given values for the input variables, ensuring that all the values involved in the
discipline are consistent.

3 Multidisciplinary Analysis (MDA): The evaluation of the complete problem based on
given values for the input variables. In order to find a set of consistent values, the
different disciplines may need to be evaluated several times.

3 Optimizer/Solver: A classical optimization technique, such as the ones we have seen in
the previous chapters. These optimizers can be applied to the problem as a whole or to
specific parts.

The classical approach to categorize MDO methods is to separate mono- and multi-level
methods.
Mono-level methods use a single optimizer and a non hierarchical structure, while multi-level
methods use a hierarchical structure and possibly several optimizers.

3.1 Mono-Level Methods

3.1.1 Multidisciplinary Feasible

MultiDisciplinary Feasible (MDF) [Cra+94], represented in Figure 3.2, is the most basic
and classical MDO method. This approach ensures at each optimization step that the design

An Adaptive MAS for Self-Organizing Continuous Optimization 33

I

Multidisciplinary Optimization

Optimizer

Discipline 1

Discipline 2

MDA

Figure 3.2: MDF method.

is consistent as a whole, taking into account all the disciplines together (hence the name).
The optimizer only uses the design variables, objective-functions and constraints. Basically,
MDF alternates between a MDA (multidisciplinary analysis) and a global optimization phase,
ensuring the design to be globally consistent at each optimization step. At each step, the
result proposed by the optimizer is used to do the full MDA whose results are used in return
for the next optimization iteration.

As it is so straightforward, MDF requires no reformulation of the problem, unlike most of
the other MDO methods, and in so is really easy to use. As the design is consistent at each
step, the optimization process can provide a solution at any time (but it will not guarantee that
the proposed solution will satisfy the constraints, as this concern depend on the optimization
technique used). However, since MDA is supposed to be costly, MDF is often considered
to be quite inefficient, since it never exploits the parallelization opportunities due to the
separation of the disciplines. MDF does not provide any guarantee of convergence.

3.1.2 Individual Discipline Feasible

Individual Discipline Feasible (IDF) [Cra+94], represented on Figure 3.3, differs from
MDF in the way that it ensures at each step consistency for each discipline separately, but
not consistency between disciplines. The global consistency of the system is not ensured
until convergence. Instead of a full MDA (as in MDF), IDF alternates the optimization with
independent disciplines analysis.

However, as the variables shared among the disciplines are not guaranteed to be consis-
tent, IDF needs to introduce a reformulation of the problem where the shared variables are
duplicated among the disciplines, and several equality constraints are added to ensure the
eventual consistency.

34 Tom Jorquera

3.2. Multi-Level Methods

I

Optimizer

SDA

Discipline 1

SDA

Discipline 2

SDA

Discipline 3

Figure 3.3: IDF method.

Optimizer

Discipline 1 Discipline 2 Discipline 3

Figure 3.4: AAO method.

3.1.3 All-At-Once

All-At-Once (AAO) [Haf85; Cra+94], represented on Figure 3.4, can be seen as the extreme
opposite of MDF, given that it does not try to maintain consistency neither at the global nor
discipline level during the optimization process until it reaches convergence. All variables are
considered as design variable for the optimizer, and the analysis equations are transformed
into equality constraints.

This transformation allows the analysis phase to be very quick, as we only need to
evaluate the residuals of the equality constraints representing the equations. However,
the drawbacks already present in IDF are even more important, as AAO requires an even
bigger reformulation of the problem, introducing many duplicated variables and consistency
constraints to the problem. This reformulation also makes the optimization phase more
complex.

3.2 Multi-Level Methods

3.2.1 Concurrent Subspace Optimization

Concurrent Subspace Optimization (CSSO) [WRB97], which can be seen on Figure 3.5, is
one of the first multi-level MDO methods. Before the optimization, the problem is decom-
posed in several subspaces related to the different disciplines. Each optimization iteration
then starts by a system analysis, followed by a series of subspaces optimization (possibly
concurrently), where each optimization tries to solve the global problem by using approx-
imate models of the rest of the system. After the subspaces optimizations, a full MDA is
done (using only the approximate models) to perform a global optimization. The result of

An Adaptive MAS for Self-Organizing Continuous Optimization 35

I

Multidisciplinary Optimization

Optimizer

MDA (using approximates)

Discipline 1*

Discipline 2*

SystemAnalysis

Discipline 1

Discipline 2

Optimizer

Subspace1

Discipline 1

Discipline 2*

Optimizer

Subspace 2

Discipline 1*

Discipline 2

Figure 3.5: CSSO method.

Optimizer

MDA

Discipline 1

Discipline 2

Discipline 1 Optimizer

SDA

Discipline 2 Optimizer

SDA

Figure 3.6: CO method.

the global optimization is then used in the next system analysis.

Originally, CSSO was developed for single-objective optimization problems. However
several efforts have been made to extend CSSO to multi-objective problems (see [Ks11] for an
overview of the different works in this regard).

3.2.2 Collaborative Optimization

Collaborative Optimization (CO) [Kro+94a], illustrated on Figure 3.6, reformulates the
problem by replacing dependencies between disciplines by equality constraints. This transfor-
mation allows to solve the discipline-level optimizations problems in parallel. A system-level
optimizer is then used to minimize the discrepancies (via the added equality constraints),
while maintaining the satisfaction of the disciplines constraints.

CO is best-suited for MDO problems with a low coupling between disciplines. The
authors have argued that one advantage of CO is that it closely matches the discipline
decomposition of the problem, as the domain-specific variables and constraints are limited to
the related disciplines. Thus, the disciplines optimization can be done by domain experts
who have a strong understanding of the subproblems.

36 Tom Jorquera

3.2. Multi-Level Methods

I

Discipline 1 Optimizer

SDA

Discipline 2 Optimizer

SDA

Optimizer

MDA with linear approximations

Discipline 1

Discipline 2

SystemAnalysis

Discipline 1

Discipline 2

Figure 3.7: BLISS method.

3.2.3 Bilevel Integrated System Synthesis

Bi-Level Integrated System Synthesis (BLISS) [JJSRRS98], shown on Figure 3.7, has been
developed to separate local and shared variables, in order to ease the distribution of the opti-
mization process (both in regard of experts teams or computational resources). BLISS shares
similarities with CSSO with the difference that local variables are assigned to the disciplines
optimizations while the global variables are assigned to the global system optimization.

For each discipline optimization problem, an approximation of the global objective-
functions and constraints is build, using linear approximation considering only the variables
of the discipline.

The optimization process cycle alternates as follow: first a system-wide analysis is
done (which includes the analysis of each subsystem) and used to provide the approxi-
mate objective-functions. Then a discipline-level optimization of the objective-functions
approximations, which is used for a system optimization concerning the shared variables.
These results are then used by the new system analysis at the start of the next step.

3.2.4 Asymmetric Subspace Optimization

Asymmetric Subspace Optimization (ASO), shown on Figure 3.8, is a work of Chittick
and Martins [CM09] to improve on MDF for MDO problems where some disciplines are
significantly more costly to analyze than the others. The classical illustration given is the
one of high-fidelity aerostructural optimization, where the analysis of aerodynamics is
significantly more heavier than the structural analysis. An intermediate optimization phase
for the structure is introduced during the MDA, in order to reduce the number of iterations
needed at the global level.

This approach can lead to significant improvements over MDF in the context of disciplines
with significant analysis costs. However when the analysis costs of the disciplines are
comparable, this approach is less efficient than MDF, as it introduces additional optimization
steps.

An Adaptive MAS for Self-Organizing Continuous Optimization 37

I

Multidisciplinary Optimization

MDA

Optimizer

Discipline 1

Discipline 2

Optimizer

Figure 3.8: ASO method.

MDA

Discipline 1

Discipline 2

Discipline 1 Optimizer

SDA

Discipline 2 Optimizer

SDA

Figure 3.9: MDOIS method.

3.2.5 MDO based on Independent Subspaces

MDO based on Independent Subspaces (MDOIS) [SP05], whose representation is shown
on Figure 3.9 has been developed for handling problems where the different disciplines are
coupled (i.e. some outputs of one discipline are used as inputs by the others and vice versa)
but they do not share any design variable or criterion.

MDOIS decomposes the system in separate subsystems. For each subsystem an optimiza-
tion problem is defined, with its own design variables, objective-function and constraints.
The coupling variables are considered constant for these subproblems. After each subsystem
has solved its optimization problem, the new values of its variables are used in a system-wide
analysis to be re-injected for the next iteration of subsystem optimization.

3.2.6 Quasiseparable Subsystems Decomposition

Quasiseparable Subsystems Decomposition (QSD) [HW05], represented in Figure 3.10, is
another specialized method for systems which can be decomposed into subproblems which
only depend on local variables and global design variables, but not on values produced by
others subsystems.

38 Tom Jorquera

3.3. Design Optimization Under Uncertainties

I

Optimizer

MDA

Discipline 1 Discipline 2

Discipline 1 Optimizer

SDA

Discipline 2 Optimizer

SDA

Figure 3.10: QSD method.

The basic idea is to assign to each subsystem a value for the global variables. An opti-
mization is done on the local variables of each subsystem to maximize its constraints margins.
Based on the result of each subsystem, a global optimization is done to assign new values to
the global variables. The process is then repeated iteratively.

3.3 Design Optimization Under Uncertainties

When the optimization problem is used in the context of real-world applications, it is
often necessary to take into account the many sources of uncertainties. While in a pure
mathematical world, all models are perfectly correct and have an infinite precision, in the
physical world our knowledge can be extremely limited. Moreover, high precision models
can require a long time to be computed, making them prohibitively costly when used in the
context of an optimization process. Finally, when the optimization problem is complex and
sensitive to parameters variations, a small approximation can result in large variations of the
outputs.

These difficulties are especially present in MDO problems. Not only the complexity of
the disciplines themselves bring its share of modeling uncertainties related to the limited
knowledge about the domains, but the product to be designed will pass through several
manufacturing phases, each of them bringing its own part of uncertainties related to the
production process.

In order to tackle these issues, several works have been done to take into account uncer-
tainties into the optimization process. A major concern regarding the modeling of uncertain-
ties is the uncertainties propagation. We propose to make a quick tour of the different ways
which have been proposed to model and propagate uncertainties.

3.3.1 Several types of uncertainties

A distinction is usually made between aleatory uncertainties and epistemic uncertainties.

Aleatory uncertainties are inherent to the studied system. They can represent for example
variability in the material used, a physical variation regarding the manufacturing of some
piece, the meteorological conditions to which a device will be exposed etc. These uncertainties

An Adaptive MAS for Self-Organizing Continuous Optimization 39

I

Multidisciplinary Optimization

are irreducible as it is impossible to remove them with a better analysis of the system.

Epistemic uncertainties result from an incomplete knowledge regarding the system.
These uncertainties can result from a limited set of data or lack of knowledge regarding a
physical phenomenon. The uncertainties are reducible as it is possible to remove them with
a better analysis of the system. However, removing epistemic uncertainty can often be too
costly or too difficult in practice, thus they still need to be taken into account during the
optimization process.

3.3.2 Uncertainties Modeling Techniques

Suppose we work on a model taking two variables as input and producing an output:
z = f (x, y). Based on known uncertainties on the inputs and the model, how easy is it to
combine and propagate these information to determine the uncertainty regarding the output?
Or more formally, can we provide a propagator P such as uz = P(ux, uy, u f) (where ui is
the uncertainty associated with the element i)? As we will see, the ease to obtain such a
propagator P depends on the chosen way to model the uncertainties.

We will now see several formal representations of uncertainties that have been proposed.

3.3.2.1 Probability Theory

Using the probability theory, uncertainty can be modeled using a distribution function.
This modeling provides the advantages of a well-studied theoretical foundation, providing
well-known combination and propagation techniques.

Aleatory uncertainties can be characterized by obtaining a distribution function from
a data sample. Well-known statistical techniques can be used to see for example if a data
sample follows a known probability distribution, measuring goodness of fit methods, that
is, how well a data sample follows a given model, such as the Kolmogorov-Smirnov test
[Mas51].
However, care must be taken as these techniques can introduce some more epistemic un-
certainties which can lead to misleading results (for example in the case of insufficient data
samples).

Concerning epistemic uncertainty, it can be more difficult to estimate a relevant distribu-
tion function, as these uncertainties represent a limitation of knowledge about the concerned
factors. While aleatory uncertainties can be studied to find some good approximation function
(for example by making several production experiments in order to evaluate the variations in
the product), it is most difficult to do so for epistemic uncertainty.

3.3.2.2 Interval Analysis

Interval analysis can be an alternative to probability theory when the lack of information
impedes modeling with a probability distribution but where the uncertainty can still be
bounded within a certain domain. How easy is it to propagate intervals depends on the
involved models.

For example, in the case of a monotonic function the lower and upper bounds can be

40 Tom Jorquera

3.3. Design Optimization Under Uncertainties

I

determined easily. In the general case, determining the boundaries is equivalent to solve an
optimization problem and can thus be done by using optimization algorithms. In the most
extreme cases, one can apply sampling techniques, but this can become quite expensive. For
some examples of existing techniques, one can refer to [KX08].

A limit of interval analysis is the lack of a measure equivalent to probability, which limits
the usefulness of this representation in the general case. This modeling can still prove useful
in the context of worst case studies where input variables can be bounded with accuracy.

3.3.2.3 Fuzzy Sets

Fuzzy sets [Zad65] can be seen as a compromise for when we still lack enough infor-
mation to use probability theory, but we have more knowledge than just the bounds of the
uncertainty.

Basically, fuzzy sets are sets where the membership of an element to the set is not absolute
but gradual. In classical set theory, an element is or is not a member of a set. This notion can

be formalized as a function fS : X → {0, 1} where

{
fS(x ∈ X) = 0⇔ x 6∈ S
fS(x ∈ X) = 1⇔ x ∈ S

In the context of fuzzy sets, the equivalent function can be formalized as fS : X → [0, 1],
where fS(x ∈ X) represents the degree of membership of x to S. A value of 1 indicates a
complete membership to S, a value of 0 a complete absence of membership to S and the
values in between specific degrees of membership. In this regard, fuzzy sets can be seen as a
generalization of classical sets.

Fuzzy sets quantification capability to represent vague information makes it attractive
to model epistemic uncertainty, as it is more precise than interval analysis and well-suited
to express expert knowledge. However this modeling is less powerful and expressive than
probability theory, lacking for example a mean to represent an uncertainty measure equivalent
to the probability of the probability theory. Indeed, the membership function is insufficient
to characterize the likelihood of non-connected events.

To overcome this limitation, the fuzzy set theory was extended into the possibility theory.

3.3.2.4 Possibility Theory

Possibility theory [Zad78] seems similar to probability theory. However, they are based
on axioms which diverge on a fundamental point.
The probability theory is based on the axiom of additivity, which says that for two disjoint sets
U and V, P(U ∪ V) = P(U) + P(V), that is the probability of at least one of two mutually
exclusive events to be verified is the sum of the probabilities of each event.

The possibility theory contains instead an axiom of sub-additivity, saying that for two
disjoints sets U and V, Π(U ∪V) = max (Π(U), Π(V)) (where Π(X) reads as “possibility of
X”).

Let us take the basic example of a door which can be either open or closed. If we assume
“the door is closed” has a probability of 0.9, it must follow that “the door is open” has
a probability of 0.1, since the sum of these two complementary events must be 1. The
probability of the door to be either open or closed is 0.9 + 0.1 = 1.

An Adaptive MAS for Self-Organizing Continuous Optimization 41

I

Multidisciplinary Optimization

In the context of possibility theory, if we state that the possibility of “the door is closed” is
0.9, it is not incompatible with the possibility of the door to be open to be, for example, 0.4.
The possibility of the door to be either open or closed is max(0.9, 0.4) = 0.9.

The intuition behind this difference is that probability theory applies to the reality, while
possibility theory applies to the knowledge one has regarding the reality, taking into account
the “fuzziness” of one’s knowledge. To cite the definition proposed by Nikolaidis et al.
[Nik+04]:

“Possibility measures the degree to which: a) A person considers that an event can occur,
or b) The degree to which the available evidence does not contradict the hypothesis that
the event can occur.”

As well as the notion of possibility, possibility theory introduces the notion of necessity.
Basically, Nec(U) = 1−Π(Ū). This definition brings several interesting properties:

Nec(U) ≤ Π(U)

Nec(U) + Π(Ū) = 1
Π(U) + Π(Ū) ≥ 1

Necessity and possibility of an event e can be viewed as lower and upper bounds to the
probability of e.

Possibility theory offers numerous tools similar to the ones of probability theory (so much
in fact that it has been debated if the two theories are really different, or if possibility theory
was merely a variation on probability theory). However, the capability of this theory to model
expert knowledge has made it quite popular in the context of uncertainty modeling.

3.3.2.5 Evidence Theory

Evidence theory [Sha76], also known as Dempster-Shafer theory (DST), takes into account
available evidences to provide a degree of belief concerning a fact.
The basic idea of this theory is to represent the notion that the more evidences seem to confirm
a proposition, the more we can believe the proposition to be true.

Evidence theory represents a proposition S as a set of elements. Thus some propositions
can include others propositions (following the basic set inclusion definition). To these sets
are assigned a basic belief assignment (BBA), also called mass.

From this mass can be calculated two measures:

3 Belief: bel(S) = ∑
S′⊆S

mass(S′)

3 Plausibility: pl(S) = ∑
S′|S′∩S 6=∅

mass(S′)

The mass measurement represents the amount of evidences which support the proposi-
tion, the likelihood of S. The belief and plausibility can be seen as lower and upper bounds
to this likelihood and, as with possibility theory, can also be used as lower and upper bounds
for probability.

42 Tom Jorquera

3.3. Design Optimization Under Uncertainties

I

Once again we can obtain some interesting properties regarding these measures:
bel(S) ≤ mass(S) ≤ pl(S)
pl(S) = 1− bel(S̄)
bl(S) + bl(s̄) ≤ 1
pl(S) + pl(s̄) ≥ 1

Several rules have been proposed to combine informations coming from different (po-
tentially conflicting) sources. To see an overview of these proposals, the reader can refer to
[SF02].

3.3.2.6 Analysis of Uncertainties Modeling

We have seen how different ways to represent the uncertainties have been proposed.
Some of these methods are based on well-studied mathematical tools, such as probabilities
theories, but may not be adapted to the lack of quantifiable information. To palliate this
insufficiency, alternative representations have been developed, based on the expression of
expert knowledge or of available evidences.

In a similar way to optimization methods, the choice of the uncertainties representation
to apply will depend on the context, on the sources of uncertainties to take in account and
the proficiencies of the experts.

3.3.3 Using Uncertainty for Robust Optimization

On Figure 3.11 a function with two optima can be seen. The minimum labeled a is
only a local optimum, being less optimal than the global minimum b. However, a is more
robust than b, in the sense that its neighborhood does not change drastically. A variation in
the inputs, or in the actual results compared to the analytical model, will result in a lesser
degradation of performances. Consequently, it can be deemed preferable to select a instead
of b, if the uncertainties would possibly result in a worst solution when trying to achieve the
solution b.
Specific methods have been dedicated to find solution which are both good (local optimum)
and robust.

3.3.3.1 Taguchi Method - The first steps of Robust Optimization

Robust optimization tries to provide a solution which is both good and insensible to small
variations of the inputs.

The research on robust optimization has been initiated with Taguchi’s robust design
methodology[Tsu92], aiming at improving the quality of manufactured goods.

In his methodology, Taguchi proposes a three-stages process:

3 System design, where the designers determine the overall structure of the product at a
high conceptual level.

3 Parameter design, where the optimal values of the design variables are determined.

An Adaptive MAS for Self-Organizing Continuous Optimization 43

I

Multidisciplinary Optimization

a

b

Figure 3.11: Example of robust optimum (a) and non-robust optimum (b).

3 Tolerance design, which focuses on reducing the variability of the various parameters
to fix an acceptable limit to the variability of quality for the product.

To help the designers during the parameter design phase, Taguchi introduces several
measures, among them the Signal-to-Noise (SN) ratios. These ratios are used to estimate the
sensitivity of a performance of the product to variations. Each ratio relates to a possible goal
regarding the studied performance: larger the better, smaller the better, on target the best.
These ratios are respectively noted SNL, SNS and SNT.

By simulation or experimentation, one must first produce a data set.The SNL and SNS

can be directly calculated as

SNL = −10log

(
1
n

n

∑
i=1

1
y2

i

)

SNS = −10log

(
1
n

n

∑
i=1

y2
i

)

For SNT, we need first to measure the mean response, given by ȳ = 1
n

n

∑
i=1

yi This mean

can then be used to calculate the standard deviation as follows

S =

√
n

∑
i=1

(yi − ȳ)2

n− 1

SNT can then be calculated as

SNT = 10log
(

ȳ2

S2

)
To reduce the sensitivity of the solution to noise, the SN ratio must be maximized. To

this end, Taguchi uses Design of Experiment[Sac+89], a statistical procedure for determining
the effects of multiple inputs on a desired output. By evaluation different designs using

44 Tom Jorquera

3.4. Analysis of MDO

I

different noise factors (temperature, pressure etc.), it is possible to obtain an array of SN
rations on which a statistical data analysis allows to identify which design provides the best
performances.

Tagushi was the first to propose a way to take in account the uncertainties in design. As it
is nearly inevitable for such pioneering work, his approach suffers from several limitations.
As the number of parameters increases, so do the number of experiments (for N parameters
and M noise factors we need 2N designs and M2N experiments). Moreover, the statistical
measures proposed by Tagushi has been subject to much debate (for a discussion of these
measures see [Nai+92]). However, Tagushi opened the way for the other methods in the field.

3.3.4 Uncertainties in Multidisciplinary Optimization

The modeling of uncertainties in MDO problem is not fundamentally different from any
other optimization problems. As with the other aspects of optimization, it is the complexity
of the problem which makes classical uncertainty propagation methods unfeasible in practice
as well as the heterogeneity of formalisms brought by different teams working in the different
domains of the problem.

Doing a global uncertainty analysis on a MDO problem can be even most costly than a
system analysis. Several strategies have been proposed for the propagation of uncertainties.
Many of them suppose an uniform representation of uncertainties (for example [DC05;
Liu+06] assume the uncertainties are modeled by probabilistic normal laws, while [Gu+00;
LA08] use interval definition). Whatever the strategy, propagating uncertainties will require
costly additional evaluations of the disciplines, and often of the entire problem. This statistical
approach for taking into account uncertainties makes an already costly problem even more
expensive to evaluate [Koc+99]. It is often necessary to fall back on approximate models in
order to reduce the computational cost of evaluating uncertainties [All+06]. Of course the
drawback is that the uncertainties evaluation will be more imprecise on these approximate
models.

We have already noted that an additional and somewhat unique challenge of MDO
comes from the need to integrate heterogeneous disciplines potentially coming from dif-
ferent experts teams with different concerns. Surprisingly, while this fact have been put
in front to justify the usefulness of multi-level MDO methods, its implications regarding
the uncertainties manipulation are not so much discussed. We already saw in the previous
chapter that multiple concurrent uncertainties representations have been developed, each one
with its advantages and drawbacks. Without doubts different experts would have different
preferences in regard of which modeling to chose. However current propagation techniques
require a homogeneous uncertainties representation for the problem.

3.4 Analysis of MDO

MDO methods try to address the problem of complex continuous optimization problems.
The principal difficulty of such problems is not their large size, but the inherent coupling and
interrelationships between the different parts, as well as the costly and heavy computational
models they involve. These properties make classical optimization techniques inefficient.

An Adaptive MAS for Self-Organizing Continuous Optimization 45

I

Multidisciplinary Optimization

MDO methods propose to reduce the complexity of the problem by separating it into different
disciplines. While the dividing strategy can vary depending on the method, the main idea is
to identify loosely coupled “blocks” in the problems, which are independent enough to be
separated without impacting too much the solving process, and which are simple enough to
be solved using known optimization techniques.

This transformation of a highly coupled system to a loosely coupled one cannot fail to re-
member the comparison of Wilden [Wil03] between “hot” (complex) and “cold” (complicated)
systems, the first ones being highly connected and integrated networks, the second ones
loosely integrated and mostly in a tree-like structures (we will indeed see in the next parts
how this representation of the system as an integrated network of components is relevant).
By reducing the complexity of the problem, MDO methods indeed ease the optimization
process, but the price of this transformation is the necessity to include intermediate steps
in order to re-establish a coherent “view” of the whole system. By taking a reductionist
approach, MDO methods are bound to suffer for this additional cost, requiring multiple
back-and-forth due to their maimed representation.

On a side note, we can wonder about the existence of inherently identifiable, separable
disciplines. One can argue that this distinction between disciplines does not correspond to
a natural separation inherent to the system to design, but is a consequence of the current
division on experts into separate expertise fields. Is the fact that an airplane design problem
can be decomposed between aerodynamic, geometry, etc. an inherent property due to the
nature of the problem? Or is the reason that this problem was constructed in the first place
by aggregating the work of experts coming from these fields? In this context, it is not
really surprising that the disciplines corresponding to these fields will be strongly internally
connected and only weakly connected to the others. And on another hand, it is easy to
imagine how experts from these different fields will tend to favor a divide into disciplines
which correspond to their specific expertise field.
Consequently, by maintaining this division between potentially arbitrary disciplines, MDO
methods are bound by the same reductionism which led to the distinction between these
disciplines in the first place.

Beyond this fundamental limitation, one major shortcomings of these methods is the
heavy work and expertise they require from the engineer to be put in practice. To actually
perform the optimization process, one must have a deep understanding of the models
involved as well as of the chosen method itself. This is mandatory to be able to correctly
reformulate the models according to the formalism the method requires, as well as to work
out what is the most efficient way to organize the models in regard to the method. Since
by definition MDO involves disciplines of different natures, it is often impossible for one
person to possess all the required knowledge, needing the involvement of a whole team in
the process. Moreover, answering all these requirements implies a lot of work before even
starting the optimization process.

Interestingly, different comparisons of multiple methods [PLB04; YSP08] showed that
complex, multi-level methods (BLISS, CSSO...) did not consistently outperform more “sim-
ple” mono-level methods (IDF, AAO...) in regard of optimization performances (quality of
solution, number of evaluations). In each case, the authors advocated that the advantages of
complex MDO methods were more about an “organizational efficiency”, as these methods are
more flexible and can more easily be adapted to existing organizational structures. While the

46 Tom Jorquera

3.4. Analysis of MDO

I

ways to measure such properties can make such analysis debatable, this argument illustrates
an important point about MDO methods: the complexity of the problem to solve is such that
the main goal is not so much to efficiently solve it than to provide experts with simple and
adapted tools in order to explore it. Sadly, the same evaluation works concluded that the
more portable and flexible solutions were also the more difficult to put in practice.

Consequently, it seems that MDO methods suffer from a gap, not in regard to their
computational efficiency (which seems nearly to be a secondary goal) but from the lack of a
method which would be both flexible and simple to put in practice.

An Adaptive MAS for Self-Organizing Continuous Optimization 47

Conclusion on Optimization

We have seen how different types of optimization problems have been defined over time,
depending on their topology, their complexity, their specificities.

Something worth noticing is the fact that all these types of problems are not inherently
different, but share a common structure. Indeed, a mono-objective optimization problem
is just a special case of a multi-objective problem. And a multi-disciplinary problem is
basically an optimization problem so complex that standard optimization techniques fail.
These differences are in no way indicative of a fundamental distinction between these
different kinds of problems, but come solely from the limitations of the existing optimization
techniques, which have to choose between being applicable in the general case and being
efficient.

An interesting observation concerning MDO techniques is the fact that, to evaluate their
performances, they are sometimes applied to simple optimization problems, solvable by
classical optimization techniques (see for example [Kro+94b] for an application of CO to
the Rosenbrock’s valley problem). This observation illustrates the fact that all optimization
problems share a common structure and differ only in their complexity (as already stated
by the quote from Martin and Lamb mentioned in the beginning of chapter 3). Of course
these examples are usually only used as illustration, as MDO methods are too heavy to be
interesting to use for such problems.

These conclusions raise an interesting question: could it be possible to create an op-
timization technique which would scale from simple optimization problems to complex
ones?

In itself this statement seems to be contradicted by the intuition provided by the NFL
theorems. However we have also seen how at the extreme end of complexity, the concern
is not so much about finding an efficient optimization technique, but finding an efficient
organization to apply specialized optimization techniques to the different parts of the problem,
while keeping a global coherence.
At this level, the actual optimization processes can be abstracted as black boxes, which are
handled behind the scene by experts or automated processes.

Thus we can reformulate our question as: could it be possible to create a technique which
would provide an adequate organization for each type of problem, adapted both to simple
problems which need to be solved quickly and to large-scale optimization problem involving
whole disciplines?

Currently, only MDO techniques could be seen as being applicable to the whole range of

An Adaptive MAS for Self-Organizing Continuous Optimization 49

I

Conclusion on Optimization

optimization problems, but their strict structure make them too cumbersome for such a task
and seems to suffer from a trade-off between simplicity and flexibility.
An ideal solution for such a problem would be a method able to adapt itself to the problem at
hand, in order to scale with the needs of the engineers.

The next part of this thesis concentrates on providing such a method.

50 Tom Jorquera

4 Multi-Agent Systems for

Optimization and the AMAS

Theory

As stated in our conclusion on optimization, providing a method able to scale to the
needs of the full range of optimization problems will requires it to be capable of adapting to
the problem at hand.

The main theme of the SMAC team1, in which this thesis has been realized, is the Adaptive
Multi-Agent Systems (AMAS) Theory. This theory relates to the design of agent-based
complex systems with self-adaptive capabilities.

In this chapter we will first describe what multi-agent systems are and how they can be
used for problem solving, before concentrating on the concepts of the AMAS theory.

4.1 Multi-Agent Systems

Multi-Agent Systems (MAS) is a relatively recent field which can be seen as the intersec-
tion of Artificial Intelligence (AI) and Systems Theory.

As a reminder, the AI field was developed in 1950s as “the science and engineering
of making intelligent machines”, as stated by McCarthy, one of the pioneers of the field
[McC+06]. This rather ambitious project was somewhat toned down during the 1970s when
the field was the subject of several setbacks leading to an “AI winter” [Hen08], whose effects
can still be felt today. The commonly accepted reason for this setback was that researchers
had been too optimistic in their expectations of the breakthroughs which would be produced
by the field, and did not take enough into account the inherent complexity of some of the
tasks they were proposing to handle (e.g. language processing).

This disgrace period of the AI field ended with the success of expert systems in the
1980s. These systems aim to emulate the ability of a human being to take decisions based on
expert knowledge, using inference mechanisms (via an inference engine) and a rules database.
However, even expert systems cannot avoid the complexity of modeling knowledge, and
are still ultimately limited by the growth of their rules database. This concern, among
others (such as privacy of informations) led to a new field of AI named Distributed Artificial

1Systèmes Multi-Agents Coopératifs (Cooperative Multi-Agent Systems)
http://irit.fr/-Equipe-SMAC-

An Adaptive MAS for Self-Organizing Continuous Optimization 51

http://irit.fr/-Equipe-SMAC-

I

Multi-Agent Systems for Optimization and the AMAS Theory

Intelligence (DAI) [OJ96], where several expert systems collaborate to provide a collective
diagnostic of a situation.

In parallel to the developments of AI, another field of knowledge emerged in the begin-
ning of the century, Cybernetics (also called System Theory), the study of self-regulating
systems. Interestingly, this field had radically different origins from AI, taking root in social
and natural sciences. These two disciplines had a somewhat uneasy coexistence for some
times during the 50s, after which AI took the lead and cybernetics was somewhat relegated
in the background (on this topic, see for example [Car10]). The field achieved a revival in the
1970s with the “new cybernetics”, or “second-order cybernetics”, which introduces the study
of self-organizing systems and the notion of external observer.

It is interesting to note the conflicting nature of AI and cybernetics. AI initially based
itself on a reductionist approach of knowledge, using symbol manipulation coming from
algebra and logics. Cybernetics was part of the more general epistemological upheaval of
Constructivism.

It is at the conjunction of these two seemingly contradictory fields that was born the study
of Multi-Agent Systems.

4.1.1 Principles of Multi-Agent System

Before talking about MAS, we must explain the notion of agent. Several definitions of
what is an agent have been proposed. We keep here the (mostly) consensual one proposed by
Wooldridge in [Wei99]:

Agent - “An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order to
meet its design objectives.”

based on this definition, a MAS is a system composed of several agents, interacting among
each others and with their environment.

The autonomy of an agent is the fundamental characteristic that differentiates it from,
for example, the computer science concept of object. While an object is a passive entity
encapsulating some data and functions, waiting to be solicited, an agent is capable of acting
and reacting with its environment. From this comparison it should be clear that the concept
of agent is, like the concept of object, the building brick of a paradigm which can be used to
model a complex reality. And indeed, agents have been used in a great variety of fields, a
fact which can contribute to explaining the difficulty to produce an unified definition of the
concept.

4.1.2 Self-* capabilities

While it is not true for all MAS, some interesting properties can be achieved when taking
advantage of the autonomy of the agents. This autonomy, coupled with an adequate behavior
of the agents, can lead to systems able to adjust, organize, react to changes etc. without the
need for an external authority to guide them. These properties are regrouped under the term
self-* capabilities (self-tuning, self-organizing, self-healing...).

52 Tom Jorquera

4.1. Multi-Agent Systems

I

Not all MAS necessarily present all of these self-* capabilities but, as a result of building a
system from autonomous and locally situated agents, many MAS will exhibit them to some
degree. Consequently, MAS are often relevant for dynamically taking into account changes
in their environment. For example, a MAS in charge of regulating the traffic of packets in a
computer network could be able to react efficiently to the disappearance of some of the relay
nodes.

4.1.3 Multi-Agent Systems for Distributed Problem Solving

In the context of this thesis, we will concentrate on the application of MAS in the specific
context of Distributed Problem Solving (DPS). However it can be useful to bear in mind the
others possible application fields: social simulation, biological modeling, systems control,
robotics etc. and agent-oriented modeling as a programming paradigm in general.

4.1.3.1 Multi-Agent Systems for Combinatorial Optimization

MAS has been applied with great success to multiple combinatorial optimization prob-
lems. Many application fields have been proposed, among which “smart grids” power
systems control [Roc+13], sensors networks [VRAC11], supply chain management [Ada+11;
Kad11] etc.

A major part of the literature on the application of MAS to combinatorial optimization
concerns Distributed Constraint Satisfaction Problems (DCSP, or DisCSP) and its extension,
Distributed Constrained Optimization Problems (DCOP, or DisCOP).

DCSP [Yok+98] is a formalism to model Constraint Satisfactions Problems (CSP) using
agents. A CSP is defined as a triplet <X, D, C> where:

3 X = x1, ..., xn is the set of variables.
3 D = D1, ..., Dn where Di is the definition domain of xi.
3 C = c1, ..., cm the set of constraints to satisfy.

The goal is to find an assignment to the set of variables X which:

3 comply with their definition domains D.
3 satisfy the set of constraints C.

In order to simplify the representation, the constraints of a CSP are often binary. In
this case, the CSP can be represented as a graph where each vertex is a variable and each
constraint an edge.

From this graph representation, the DCSP formalism models a CSP as an agent graph,
with each agent in charge of assigning a value to a variable based on local and shared
constraints. A DCSP is described as a quadruplet <X, D, C, A>. X, D and C have the same
meaning than in the CSP formalism, while A is the set of agents. Each agent in A has the
responsibility of a subset of X and knows the constraints related to the variables in its care.
The most common assumption is that each agent has the responsibility for one and only one
variable. See Figure 4.1 for an illustration of the graph transformation of a DCSP.

One classical example of DCSP solver is Asynchronous Backtracking (ABT) [Yok01]. ABT
creates a total ordering on the agents and models the relations between agents as directed

An Adaptive MAS for Self-Organizing Continuous Optimization 53

I

Multi-Agent Systems for Optimization and the AMAS Theory

X = {x1, x2, x3}
D = {{0, 1}, {1, 2}, {0, 1, 2}}
C = {(x1 6= x3), (x2 6= x3)}

(a) formal definition.

x1 x2

x3

{1,2}{0,1}

{0,1,2}
(b) corresponding agent graph.

Figure 4.1: An example of the DCSP representation.

links, in order to make the network cycle-free. In ABT agents exchange nogoods, which are
conditional constraints (the constraint is valid as long as the other agents do not change
states). When an agent detects a nogood, it checks if it can change its state in order to solve it.
If it is possible it does so and informs the agents to which it is linked. Else it propagates it to
the lowest priority agent it knows (based on the established ordering) involved in the nogood,
creating new links if necessary.

An extension of DCSP has been proposed for formalizing Distributed Constraint Opti-
mization Problems (DCOP, or DisCOP). DCOP is to COP the equivalent of DCSP to CSP.
While a DCOP is described in the same way than a DCSP, the semantic and goal are different.
In DCOP, the constraints in C represent a decomposition of a global cost function, which the
agents try to minimize (or alternatively, maximize). Each constraint is now seen as a local cost
function giving the cost associated with each state of the involved variables (in the context of
DCOP, the term constraint is sometimes replaced by the terms cost function or soft constraint).
Formally, DCOP considers the global objective-function F(X) = ∑

xi ,xj∈X
cij(xi, xj) where cij is a

local cost function associated with the states of xi and xj.

A classical use of DCOP is unsolvable CSP, problems where there is no solution which
satisfies all the constraints. In these cases the problem can be changed into a DCOP with the
new objective to minimize the number of violated constraints. If we wanted to transform the
problem shown in Figure 4.1 (ignoring the fact that this DCSP is in itself solvable), we could
replace the constraints in C by the function c13 and c23 defined as follows:

x1 x3 c13(x1, x3)

0 0 1
1 0 0
0 1 0
1 1 1
0 2 0
1 2 0

x2 x3 c23(x2, x3)

1 0 0
2 0 0
1 1 1
2 1 0
1 2 0
2 2 1

In the context of this framework, many techniques have been proposed. One of the lead-
ing algorithms to date is the Asynchronous Distributed Optimization Algorithm (ADOPT)
[Mod+06].In order to work, ADOPT also needs to reformulate the problem by introducing
a total ordering on the agents. This ordering allows to create a tree representation of the

54 Tom Jorquera

4.1. Multi-Agent Systems

I

problem, where each agent has a single parent and multiple children. The algorithm in itself
is articulated on two main ideas:

3 each agent asynchronously changes states when it perceives a possible better solution.
3 the agents can backtrack to previously explored solutions, but only if this current state

is worse than a specific backtrack threshold determined by its parent agent.

Another well-known algorithm is Optimal Asynchronous Partial Overlay (OptAPO)
[ML04]. This algorithm is an adaptation of Asynchronous Partial Overlay (APO), which
was proposed for solving DCSP. OptAPO, as APO, is based on the principle of Cooperative
Mediation, where the agents try to identify parts of the problems which can be solved in
a centralized way (using centralized solvers such as Branch-and-Bound). During solving,
some of the agents take the role of mediators during mediator sessions, where they compute
a solution to a part of the whole problem and propose the solution to the others agents
involved into the mediation.

The DCOP formalism is very popular in its own right as it allows a clear framework on
how to represent this type of combinatorial problems without putting too much restrictions
on how the problem is solved. The exact information shared by the agents, and the way they
communicate among themselves is not constrained. However this formalism is not without
limitations.
While some works successfully used DCOP in the context of continuous optimization[Str+09],
this formalism is not adequate to handle the full range of continuous optimization problems.
DCOP was conceived for a specific type of problems where the difficulty resides in the
combination of multiple constraints. These problems are supposed to be easily decomposable
into several cost functions, where the cost values associated to the variables states are
supposed to be known. This major assumption does not stand for complex continuous
optimization problems (such as MDO problems for example), where the complexity of the
models and their interdependencies cause this information to be unavailable in most cases.

It is interesting to note that many methods require non-trivial changes to the topology
of the agent graph to work (acyclic graph, tree structure...), both in the context of DCSP
and DCOP. These changes can be potentially extensive operations in themselves, and must
be done carefully lest the relevance of the results be compromised. In this regard, most
existing agent-based optimization techniques for DCOP may require a strong expertise to be
efficiently applied[Kad11].

4.1.3.2 Multi-Agent Systems for Continuous Optimization

While MAS are a popular approach for solving combinatorial optimization problems, their
application to continuous optimization is scarce at best. One could explain this discrepancy
by the fact that continuous optimization problems are in general more difficult to decompose
than combinatorial ones.

As said in the previous section, an adaptation of DCOP with continuous variables has
been proposed in [Str+09]. This work proposes an adaptation of the max-sum algorithm in the
continuous case by redefining the two operations of summation and maximization in order
to be able to use them over continuous utility functions. However, this work concentrates on
a specific type of problem (distributed sensor networks) and the utility functions must be

An Adaptive MAS for Self-Organizing Continuous Optimization 55

I

Multi-Agent Systems for Optimization and the AMAS Theory

piecewise linear. It is not applicable to the broader scope of general continuous optimization
problems.

Some works have been proposed for using MAS for dynamic continuous optimization (see
[Lep+10] for example). However these works usually involve population-based exploration
of the search space, where one agent represents a single candidate solution of the problem.
These kinds of population-based approaches are ill-suited for complex problems, where a
major difficulty is the cost of evaluating a point in itself.

A notable work on the subject of complex continuous optimization is the MASCODE
algorithm [Wel+06], which concentrates on MOO and MDO problems. In MASCODE, each
agent is in charge of a discipline and the links between agents represent the dependencies
between the different disciplines. For each input of a discipline, a physical validity interval
and an objective validity interval are defined. These two intervals represent respectively the
physical constraints of the model and the boundaries of an objective to achieve. Using these
two measures, a satisfaction indicator is defined using a parametric piecewise continuous
function. The basic idea of this satisfaction indicator is as follows:

3 when the value of the input is in the boundaries of the objective validity interval, the
satisfaction of the agent regarding this input is high,

3 when the value of the input is outside of the objective validity interval but inside the
physical validity interval, the satisfaction lowers,

3 if the value of the input goes outside the physical validity interval, the satisfaction
becomes minimal.

The agents use the values of their inputs to send forward messages, informing others agents
of the values of their outputs. Upon reception of these messages, an agent uses these new
values to recalculate its own outputs (potentially sending in turn new forward messages) and
send backward messages to the agents controlling their inputs. These backward messages are
modification requests indicating the satisfaction of the requesting agent. Upon reception of
such messages, the agent will select which ones to handle based on the current satisfaction
degree of their sender, and will change the value of its inputs accordingly (sending in turn
new backward messages if required).

This algorithm is very interesting as it makes very few presuppositions concerning the
shape of the optimization problem. The problem can be expressed as initially conceived
by the designer, without requiring special transformation operations. Still, there are some
limitations to the expressiveness of the formulation. The possibilities for the designer to
express constraints and objectives of the problem are restricted to the specific use of the
physical and objective validity intervals. As a consequence, constraints and objectives cannot
be expressed independently, and can only concern one variable at a time. While this latter
limitation can somewhat be circumvented by introducing artificial disciplines placeholders,
the natural modeling of the domain is then lost. This limitation can be explained as a
consequence to the specific application domain which was considered for the algorithm
(industrial product design).

56 Tom Jorquera

4.2. The Adaptive Multi-Agent Systems Theory

I

4.1.3.3 Analysis of Multi-Agent Systems for Distributed Problem Solving

We have seen in this section how MAS have been applied for problem solving. While the
solving of discrete constraint satisfaction and optimization problems has been a very popular
topic of interest, very few works exist concerning the solving of continuous problems. Among
the few existing works, most concentrate on specific application topics, thus no real unified
effort exist in this regard comparable to one which can be observed for discrete optimization.

One of the main contributions of this thesis is to rectify to this deficiency by providing not
only an agent based method for general continuous optimization but also a general modeling
for enabling further contributions on a comparable basis.

4.2 The Adaptive Multi-Agent Systems Theory

4.2.1 Theorem of Functional Adequacy

The design of a MAS for problem solving is not an easy endeavor. We can observe that
many of the MAS for problem solving proposed by the scientific community are nature-
inspired (ants, flocks, bees, bats etc.) [DMSGK11]. Indeed, Nature had a long time to
experiment on several arduous problem and plenty of subjects at hand. Why would we
not take advantage of that? However, such a strategy presents a severe limitation, as it is
ultimately restricted into the potential solutions it can provide.

In order to overcome this limitation, we need to rely on a more theoretical approach
which would help us in the design of MAS for which we do not know any existing applicable
mechanisms. Such an approach is provided by the Adaptive Multi-Agent Systems (AMAS)
theory.

The AMAS theory was developed by the SMAC team and formalized in [Gli01]. It focuses
on cooperation as the fundamental mechanism of MAS design.

At the base of the theory is the modeling of a system as a set of entities, the agents,
interacting with each others and with their environment. The system can be deemed to be
functionally adequate by an external observer if this latter judges that the system as a whole
correctly accomplishes its function in regard to the environment. This external observer can
be considered to be a perfect oracle, in a way similar to the Laplace’s demon, knowing exactly
what will be the consequences of the interactions between the system and its environment.

It is important to understand that, from a theoretical point of view, the notion of functional
adequacy is inherently subjective, and depends on the observer. In practice it is however
easier to attain a reasonable consensus. For example a natural system will usually be deemed
adequate if it survives and thrives in a sustainable way. For an artificial system it is often even
easier since the functional adequacy corresponds to the function expected by the designer of
the system.

The AMAS theory identifies three categories of interactions between a system and its
environment:

3 Cooperative action: the acting entity is beneficial to the other.
3 Antinomic action: the acting entity is detrimental to the other.

An Adaptive MAS for Self-Organizing Continuous Optimization 57

I

Multi-Agent Systems for Optimization and the AMAS Theory

C

C

NA

A

(a) Non functionally adequate system.

C

C

N

NC

(b) Functionally adequate system.

C

C

N N

A

(c) Non internal cooperative medium system.

C C

C

C

C

(d) Internal cooperative medium system.

Interaction

Agent

System

A Antagonistic
interaction

N Neutral
interaction

C Cooperative
interaction

Figure 4.2: Illustration of functionally adequate and internal cooperative medium systems.

3 Neutral action: the acting entity has no effect on the other.

From this categorization, the theory draws its formal definition (and fundamental axiom)
of functional adequacy:

Axiom of functional adequacy - A functionally adequate system has no
antinomic interaction with its environment

An illustration this axiom is shown on Figure 4.2a and Figure 4.2b.

Using this axiom, several properties have been demonstrated concerning the specific set
of internal cooperative medium systems, defined as systems in which the agents do not have
any antinomic or neutral interaction (illustrated on Figure 4.2c and Figure 4.2d). We will not
enter here in the details of these properties and their demonstration, the interested reader
can refer to [Gli01; GCG99]. Suffice to say that these properties lead to the central theorem of
functional adequacy:

Theorem of Functional Adequacy - For each functionally adequate sys-
tem there exists an internal cooperative medium system also functionally
adequate in the same environment

58 Tom Jorquera

4.2. The Adaptive Multi-Agent Systems Theory

I

Violated condition Corresponding NCS

Cperception Incomprehension, Ambiguity
Cdecision Incompetence, Unproductiveness
Caction Uselessness, Competition, Conflict

Figure 4.3: The conditions for cooperation and corresponding NCS.

This theorem is at the core of the AMAS approach of system design. We already know
that for each problem there is possibly an infinity of equivalent systems producing the same
adequate functioning. Using the theorem of functional adequacy we can concentrate on
designing an internal cooperative medium system, that is, designing a system were the agents
cooperate among themselves and with their environment. The goal of a designer using this
approach is thus to study the nature of the interactions between the entities of the problem
domain, and to see how the non cooperative situations could be corrected in order to obtain
an internal cooperative medium system.

In addition to providing us with a theoretical context, this approach gives us another
interesting property: as the design of the system is focused on the local interactions of the
agents, we do not need to explicitly take into account the global function of the system.
This property is extremely significant. If the global function is complex, it can be extremely
difficult to successfully design a system which explicitly tries to achieve the global function
(top-down approach). By concentrating on the local functions of the agents, we can spread the
complexity and ease the design of the system (bottom-up approach). As such, this approach
strongly relies on emergence phenomenons and is often referred to as “Emergent Problem
Solving” [Qui00].

4.2.2 Cooperative Agents and Non Cooperative Situations

To guide the designer during the building of such internal cooperative medium system,
the conditions of what makes an agent a cooperative agent have been further formalized. An
agent is said to be cooperative if it satisfies three conditions:

3 Cperception Every perceived signal can be understood without ambiguity.
3 Cdecision Every interpretation must produces useful information.
3 Caction Every action done based on the decision must be useful.

Based on these conditions, a set of Non Cooperative Situations(NCSs) has been identified.
These NCSs correspond to interactions which are not cooperative, and must be removed for
the system to be an internal cooperative medium system. The NCSs are classified based on
the condition they violate. The table in Figure 4.3 shows this classification.

The different NCSs are:

3 Incomprehension The agent is not able to extract information from a received message.
3 Ambiguity The exact meaning of a message cannot be determined, or lacks required

informations.
3 Incompetence The agent does not have the capabilities to handle a received informa-

tion.
3 Unproductiveness A received information does not lead to any useful conclusion.

An Adaptive MAS for Self-Organizing Continuous Optimization 59

I

Multi-Agent Systems for Optimization and the AMAS Theory

3 Conflict The action of the agent is incompatible with an action from its environment.
3 Competition The action of the agent leads to the same result than an action from its

environment.
3 Uselessness The action of the agent has no effect on itself or its environment.

A cooperative agent actively tries to avoid these NCSs and, should this fail, to solve them
to the best of its capabilities. To this end, three distinct mechanisms can be used[BBG09]:

3 1. Tuning The agent can change one or several of its internal parameters (e.g., adjusting
the priorities of its behavior rules).

3 2. Reorganization The agent can change its relationship with its environment (e.g.,
removing or creating new links with others agents).

3 3. Evolution The agent can change the nature of its environment (e.g., removing or
creating new agents).

The order of these mechanisms usually correspond to their level of disruption (i.e., ad-
justing its parameters usually has less consequences than creating and removing agents). In
general, it is preferable to make the less disruptive possible adjustment. One can for example
design the agents based on an escalation principle, where the agents try to solve a NCS first
by using tuning, escalating to a more disruptive mechanism only when the previous ones
failed to solve the NCS. Of course, a NCS situation being by itself disruptive, it is sometime
more efficient to immediately make a more radical adjustment in order to solve the NCS
more quickly. The designer will have to balance these concerns according to the specificities
of the system.

4.2.3 The Importance of Locality

A primordial aspect of the AMAS theory is the importance of locality. The theory insists
on the need to consider and consider only the partial knowledge and local interactions
between the agents, without trying to provide a “bigger picture”. While this concern can be
linked to specific notions like the concept of emergence, we believe that a direct explanation
can be found regarding preoccupations about the scalability of the system.

The AMAS theory concerns systems which aim to solve complex problems. By definition
the difficulty of such problem increases exponentially with its size. To design a MAS able
to scale with the size of the problem, the designer has in general two possibilities: he can
increase the size of the system or increase the complexity of the agents. The key difference
between these two operations is their marginal costs.
While adding a new agent to the system should usually represent a constant cost (in terms
of complexity, computational requirements ...), increasing the complexity of the agents will
be more and more difficult, since the agents will individually reach the same limitations as
centralized methods. The principle of locality is a good example for this argument. Suppose
a hierarchical system where one of the agent is in charge of a whole subsystem. If the increase
of the complexity of the problems results in an increase of complexity of the subsystem, after
some limits the agent will not be able to handle correctly the subsystem, resulting in a limit
to the scalability of the system as a whole.

The software engineer will not miss the uncanny similarity of this argument with the
relatively recent trend regarding scalability concerns for computer infrastructures (for e.g.

60 Tom Jorquera

4.2. The Adaptive Multi-Agent Systems Theory

I

web servers, distributed databases etc.). The two main categories for scaling resources in
such systems are vertical scalability (scaling “up”) and horizontal scalability (scaling “out”).
Vertical scalability is the improvement of existing resources for them to be able to handle
more data/traffic/..., while horizontal scalability consists in adding more resources to spread
the workload. While in the past vertical scalability was the dominant practice, the current
consensus seems to be that horizontal scalability is easier and provides better performances
increase [Mic+07].
Of course such comparison must be made with caution, as the context of the two fields are
quite different. However it is interesting to note how similar concerns from these different
fields led to a similar evolution in the approaches.

Obviously, such general principles cannot hold systematically true and some problems
which cannot be solved by adding more agents are easily resolved by improving their
reasoning capabilities. More so, in some cases increasing the size of the system can increase
the complexity of the existing agents (for example by adding neighbors to an agent, thus
increasing the complexity of its decision process). Still, in the general case, the motto of
approaches such as the one of the AMAS theory could be “scale out when you can, scale up
when you must”.

4.2.4 ADELFE - A Method for Designing AMAS

ADELFE [Ber+03] is a method dedicated to the development of AMAS. The name
“ADELFE” is the French acronym for “toolkit to develop software with emergent func-
tionality” (Atelier pour le DEveloppement de Logiciels à Fonctionnalité Emergente). While ADELFE
is not the only method devoted to guide the design of a MAS, it is the only one specifically
tailored for AMAS.

The ambition of ADELFE is to provide be-all and end-all method to guide engineers
during all the phases of the design of an AMAS, from the high-level requirements to the
“nuts and bolts” implantation details. This ambition was the driving factor for multiple
projects with the objective to improve or complement ADELFE with additional tools, such as
the Make Agents Yourself (MAY) framework [Noe12], used to automatically generate agent
architecture implementations.

However, as for most general engineering methods, a current limitation of ADELFE is that
it only provides high-level guidelines concerning the behavior and architecture of the agents,
staying at a general, abstract level. This current limitation makes difficult for a non-expert
in AMAS to actually provide an adequate instantiation for the problem he wants to solve.
It is the same analysis in [Kad11] which led the author to prone a specialized variant of the
method containing additional guidelines and tools for applying AMAS in the context of
problem solving.

We will go into greater details concerning the inner workings of ADELFE and how this
method was involved in the context of this thesis in chapter 8.

4.2.5 Conclusion on the Adaptive Multi-Agent Systems Theory

We presented here the AMAS theory. This theory proposes a way to model systems by
their constituting parts, the interactions between themselves as well as with the environment,

An Adaptive MAS for Self-Organizing Continuous Optimization 61

II

Multi-Agent Systems for Optimization and the AMAS Theory

and identify the special category of internal cooperative medium systems.

An interesting aspect of this theory is that it provides a guidance to build a multi-agent
system based on the problem to solve. Classical solving methods often use a very rigid
formalism which needs to be followed. For example, genetic algorithms are a very powerful
technique, but they require the problem to fit the genetic representation/fitness function
model. To use these kinds of methods, one would now be presented with a whole new
problem: “how can I express my problem to fit the solution I want to employ?”

While a non-negligible part of real-world problems are more or less straightforwardly
translatable in such formalisms, there is still a whole range of problems for which this
translation is not so easy. This can be either because no method adequate enough for the
domain was proposed, or because there is no consensual representation of the domain. For
these problems, the AMAS theory can provide an interesting asset as the design of the MAS
is based on the problem domain. The solution is adapted to the problem, instead of requiring
the problem to be adapted to the solution.

We can say that, while the AMAS approach can be applied to any kind of problem, it
seems to be especially adequate when trying to solve problems that are still in an exploratory
phase, where no “clear-cut” solution exists.

62 Tom Jorquera

An Adaptive Multi-Agent System for
Self-Organizing Continuous Optimization

A Multi-Agent System for Continuous

Optimization

An Adaptive MAS for Self-Organizing Continuous Optimization 63

II

In the previous part we discussed an inherent limitation of the current continuous op-
timization approaches. Not only are the current methods highly specialized, but they are
also limited by the size, and ultimately by the complexity of the problem. The most complex
problems require specific approaches (MDO methods) in order to distribute this complexity
while keeping a coherent view. However, these approaches are often complicated to put in
practice and tend themselves to be specialized to certain problem types.

In this part we present the main contribution of this thesis: a novel approach to solve
complex continuous optimization problems using a MAS. We start by creating a new mod-
eling of continuous optimization problems as entities graphs, and agentify these entities to
produce a MAS. We then design agent behaviors and specific mechanisms for the MAS to be
able to solve the optimization problem in a distributed way, while maintaining a coherent
view of the problem by propagating messages from neighbors to neighbors.

First we propose a new way to model a continuous optimization as a MAS. We want
our modeling must be general enough to allow any continuous optimization problem to be
transformed in such a way. We also want it simple enough to be automated, which is not
only a requirement in the case of big problems, but also a way for the MAS to work “behind
the scenes”, without requiring the user of the system to have a specific knowledge of multi-
agent related concepts. Since optimization specialists often possess expert knowledge and
techniques associated to the problems they want to solve, we would like our modeling to be
able to integrate with external optimization tools. Our last requirement is to allow the persons
in charge of the optimization process to be able to express the problem in the formulation
which is the most natural for them, without requiring the problem to be reformulated in any
way.

After presenting our modeling, we design an agent-based algorithm for the solving of
complex continuous optimization problems. We expose the basic, nominal workflow of
the system, how the agents try to optimize the different parts of the system and exchange
inform and request messages in order to propagate changes and coordinate the optimization
process. We then see how specific configurations related to complex continuous optimization
problems can cause this nominal optimization workflow to fail. Using the AMAS theory, we
categorize these configurations into different non cooperative situations. For each of these
NCSs we propose additional cooperative mechanisms in order to detect, solve the NCS and
re-establish the correct optimization process.

At last, we see how our agent modeling can be extended, by proposing some modifications
in our system to take in account the handling of uncertainties during the optimization process.
We first see how the expression of the problem is changed by the integration of uncertainties.
We modify the structure of the information exchanged by the agents and identify some
key operations they require in order to be able to manipulate exchanged data. Finally we
propose a generic mechanism for experts to be able to express how different representations
of uncertainties can be propagated in the context of the problem to solve.

An Adaptive MAS for Self-Organizing Continuous Optimization 65

5 Agent-Based Modeling and

Simulation of a Continuous

Optimization Problem

5.1 NDMO: A Natural Domain Modeling for Optimization

As we previously stated, when solving complex continuous problems existing techniques
(i.e. MDO methods) usually require a transformation of the initial formulation, in order
to satisfy some requirements for the technique to be applied. Beside the fact that correctly
applying these changes can be a demanding task for the designers, imposing such modifica-
tions changes the problem beyond its original, natural meaning. What we propose here is an
agent-based modeling where the original structure, the original meaning of the problem is
preserved, because it represents the formulation which is the most natural and easiest for the
expert to manipulate. This modeling decomposes the elements of the problem into a graph
of entities, which can then be instantiated as agents. We call this modeling Natural Domain
Modeling for Optimization (NDMO).

To illustrate how an optimization problem is modeled with NDMO, we use the example

Figure 5.1: Illustration of a Turbofan engine (CC SA-BY K. Aainsqatsi).

An Adaptive MAS for Self-Organizing Continuous Optimization 67

http://en.wikipedia.org/wiki/File:Turbofan_operation.svg

II

Agent-Based Modeling and Simulation of a Continuous Optimization Problem

«abstract»
Value

«abstract»
Criterion

Objective Constraint

0..n 1..n
use

Variable Output

Model
0..n1..n

use

1..1

1..n

produce

Figure 5.2: Class diagram of MDO problems.

(Tdm0, s, f r) = Turbo f an(pi_c, bpr)
max Tdm0

min s
subject to
s ≤ 155
f r ≥ 4

(a) mathematical formulation.

pi_cbpr

Turbofan
Model

fr

fr >= 4

s

min s
max
Tdm0

Tdm0

s <= 155

Design Variables

Outputs
Model

Objectives Constraints

(b) corresponding entities graph.

Figure 5.3: Turbofan problem.

of a simplified turbofan optimization problem. On Figure 5.1, an illustration of the principle
of the turbofan can be seen. On such engine, we call bypass ratio the ratio between the air
drawn in by the fan not entering engine core (which is bypassed) and the air effectively used
for the combustion process. We also call pressure ratio the ratio between pressure produced
by the compressors and the pressure it receives from the environment.

In order to identify the elements of a generic continuous optimization model, we worked
with experts from several related fields: numerical optimization, mechanics as well as
aeronautics and engine engineers. As a result, we identified five classes of interacting entities:
models, design variables, outputs, constraints and objectives. These entities and their relations are
represented by the diagram in Figure 5.2, that we detail next.

On Figure 5.3a, the analytic expression of this optimization problem is given, while on
Figure 5.3b, the problem is presented as a graph of the different entities. The design variables
of this problem are pi_c and bpr, which indicate respectively the compressor pressure ratio
and the bypass ratio of the engine. The turbofan model produces three outputs: Tdm0, s
and f r, representing respectively the thrust, fuel consumption and thrust ratio of the engine.
In this problem we try to maximize the thrust and minimize the fuel consumption while
satisfying some feasibility constraints.

Let us now see in more details the roles of each of these fives entities: model, variable,

68 Tom Jorquera

5.1. NDMO: A Natural Domain Modeling for Optimization

II

output, constraint and objective.

5.1.1 Models

In the most general case, a model can be seen as a black box which takes input values
(which can be design variables or outputs) and produces some output values. A model repre-
sents a technical knowledge of the relations between different parts of a problem and can be
as simple as a linear function or a much more complex algorithm requiring several hours of
calculation. Often some properties are known (or can be deduced) about a model and special-
ized optimization techniques can exploit this information. It is important to understand that
what exactly is a “model” is quite an arbitrary choice, based on the application domain of the
problem. Depending on the goals and needs, a same problem will be divided into models of
different granularities and scopes. A model can represent a simple calculus step as well as an
entire discipline.

In our Turbofan example on Figure 5.3, the Turbo f an function is a model entity which
calculates the three outputs using the values of bpr and pi_c (marked πc in the equations of
the model). The equations contained in the model itself are described on algorithm 5.1.

5.1.2 Design Variables

These are the inputs of the problem and can be adjusted freely (within their defined
boundaries). The goal of the optimization process is to find the set(s) of values for these
variables that maximize the objectives while satisfying the constraints. A design variables
can be used by models to calculate their output values and by constraints and objectives to
calculate their current value. A design variable can be shared among several models, objectives
and constraints.

Keeping with our example on Figure 5.3, the bypass ratio bpr and the compressor pressure
ratio pi_c are the two design variables of our optimization problem.

5.1.3 Outputs

These values are produced by a model, and consequently cannot be changed freely. As for
the design variables, the outputs can be used by models to calculate their output values and by
and by constraints and objectives to calculate their current value.

In our example on Figure 5.3, the thrust Tdm0, the fuel consumption s and the thrust ratio
f r are outputs produced by the Turbo f an model.

5.1.4 Constraints

They are strict restrictions on some parts of the problem, represented as functional
constraints defined by equalities and/or inequalities. They can be the expression of a physical
limitation, or a requirement concerning the problem.

Regarding the Turbofan on Figure 5.3, the two constraints are s <= 155 and f r >= 4.

An Adaptive MAS for Self-Organizing Continuous Optimization 69

II

Agent-Based Modeling and Simulation of a Continuous Optimization Problem

Algorithm 5.1: Turbofan Model
Input: bpr, πc

// constants
γ = 1.4
cp = 1004.5
h f uel = 42.8× 1e + 06
αthrust = 1.0
t0 = 216.7
m0 = 0.83
ηc = 0.9
η f = 0.9
ttburn = 1560.0
π f = 1.7

r ← (γ− 1)× cp
γ

a0← √γ× r× t0
u0← m0× a0

τr ← 1 +
γ− 1

2
×m02

τλ ←
ttburn

t0

τc ← π

γ− 1
ηc × γ
c

τf ← π

γ− 1
η f × γ
f

τt ← 1− taur

tauλ
× ((τc − 1) + bpr× (τf − 1))

UeU0←
√

τr × tauc × τt − 1
τr − 1

× λ

τr × τc

U f U0←
√

τr × τf − 1
τr − 1

// outputs computation

Tdm0← u0× 1
(1 + bpr)

× (UeU0− 1) +
bpr

1 + bpr
× (U f U0− 1))× αthrust;

s← f
(1 + bpr)× Tdm0

× 10e + 06

f r ← UeU0− 1
U f U0− 1

70 Tom Jorquera

5.2. From an Optimization Problem to a Multi-Agent System

II

5.1.5 Objectives

The goals to be optimized. In the general case, different objectives are often contradictory.

The two objectives of the Turbofan problems on Figure 5.3 are to maximize th thrust Tdm0
and to minimize the fuel consumption s.

Constraints and objectives are usually regrouped under the more general term of optimiza-
tion criteria.

An interesting and important point is that both models, constraints and objectives involve
computation. Often the most heavyweight calculus is encapsulated inside a model and
the calculi concerning criteria tend to be simple equations, but this is neither an absolute
requirement nor a discriminating characteristic.

Using this decomposition, the optimization problem can then be represented as a graph
G = (V, E), where the vertices set V is a tuple 〈Vd,Vo,M,O, C〉 (denoting respectively the
sets of design variables, outputs, models, objectives and constraints of the problem), and
E is the set of relations between the entities. It can be noted that the graph is bipartite
regarding the two sets (Vd ∪ Vo) and (M∪O ∪ C), as design and output variables can only
be connected to models, objectives or constraints, which can themselves only be connected to
design or output variables. Using our Turbofan example, the tuple 〈Vd,Vo,M,O, C〉 of the
graph representing this problem is defined as:

Vd = {bpr, pic},
Vo = {Tdm0, s, f r},
M = {Turbo f an_Model},
O = {max Tdm0, min s},
C = {s <= 155, f r >= 4}.

The NDMO modeling aims to provide the most complete and natural representation
of the problem. This modeling preserves the relations between the domain entities and is
completely independent of the solving process. The distinct entities that are extracted from
the analytical formulation of the problem do not come from an arbitrary decision but are
inherent to the problem formulation. On the other hand, all the relationships present between
these entities are preserved without any simplification regarding the initial complexity of the
problem.

5.2 From an Optimization Problem to a Multi-Agent System

Based on the NDMO modeling in section 5.1, we propose a MAS where each domain
entity is associated with an agent. Thus the MAS is the representation of the problem to be
solved, with the relationships between agents reflecting the natural structure of the problem.
It is worth underlining the fact that this transformation (i.e. the agentification) is completely
automatic, as it is fully derived from the expression of the problem.

The solving process —constituted by the collective behavior of the agents— basically

An Adaptive MAS for Self-Organizing Continuous Optimization 71

II

Agent-Based Modeling and Simulation of a Continuous Optimization Problem

z

x y

Inform: 2

M z = x + y

Inform: 1 Inform: 1
1

2

3

(a) Inform handling:
1. receive informs.
2. recalculate outputs.
3. propagate informs.

z

x y

Request: 2

M z = x + y

Request: 1 Request: 1

1

2

3

(b) Request handling:
1. receive request.
2. estimate inputs changes.
3. propagate request.

Figure 5.4: Model agent behavior.

relies on change-value requests sent by the criteria agents, resulting in cooperatively decided
adjustments done by the design variables. These adjustments lead to new values computed by
the models, resulting on the satisfaction or dissatisfaction of the criteria agents. In the same
way we presented the different elements of NDMO, we now detail the behaviors of our five
agent types: model, variable, output, constraint and objective agents.

5.2.1 Model Agent

A model agent takes charge of a model of the problem. It interacts with the agents handling
its inputs (which can be variable or output agents) and the output agents handling its outputs.
Its individual goal is to maintain the consistency between its inputs and its outputs. To this
end, when it receives a message from one of its inputs informing it of a value change, a model
agent recalculates the outputs values of its model and informs its output agents of their new
value (as seen on Figure 5.4a). On the other part, when a model agent receives a request from
one of its output agents it translates and transmits the request to its inputs (as seen on Figure
5.4b).

To find the input values corresponding to a specific desired output value, the model agent
uses an external optimizer. This optimizer is provided by the engineer based on domain-
dependent expert knowledge regarding the structure of the model itself. It is important to
underline that the optimizer is used only to solve the local problem of the model agent, and is
not used to solve the optimization problem globally.

5.2.2 Variable Agent

This agent represents a design variable of the problem. Its individual goal is to find a value
which is the best equilibrium among all the requests it receives (from models and criteria for

72 Tom Jorquera

5.2. From an Optimization Problem to a Multi-Agent System

II

x

x >= 1

Request:1 Inform:1
1 2

Figure 5.5: Variable agent behavior:
1. receive request.

2. answer with inform.

x

M

x >= 1

Inform:1

Inform:1
2

1

(a) Inform handling:
1. receive inform.
2. propagate inform.

x

M

x >= 1

Request:1

Request:1
1

2

(b) Request handling:
1. receive request.
2. propagate request.

Figure 5.6: Output agent behavior.

which it is an input). The agents using the variable as input can send requests asking it to
change its value. When changing value, the agent informs all the related agents of its new
value. This behavior is shown on Figure 5.5.

5.2.3 Output Agent

The output agent takes charge of an output of a model. Output agent and variable agents
have similar roles, except that output agents cannot directly change their value. Instead they
send a request to the model agent they depend on. In this regard, the output agent act as a filter
for its model agent, selecting among the different requests the ones it transmits. This behavior
is summarized on Figure 5.6.

An Adaptive MAS for Self-Organizing Continuous Optimization 73

II

Agent-Based Modeling and Simulation of a Continuous Optimization Problem

1

x

x >= 1

Request:1Inform:1
2

(a) Constraint agent behavior:
1. receive inform.
2. answer with request.

1

x

min x

Request:1Inform:1
2

(b) Objective agent behavior:
1. receive inform.
2. answer with request.

Figure 5.7: Constraint and objective agents behavior.

«abstract»
Value Agent

Constraint
Agent

Variable
Agent

Output
Agent

Model
Agent

Objective
Agent

«abstract»
Internal Model

Agent

«abstract»
Criterion
Agent

1..* 0..*
input

Internal Model

External
Optimizer

1..1
have

0..* 0..*
use

Effective agents

0..* 0..*
output

Figure 5.8: MAS class diagram.

5.2.4 Constraint Agent

The constraint agent has the responsibility for handling a constraint of the problem. When
receiving a message from one of its inputs, the agent recalculates its constraint and checks
its satisfaction. If the constraint is not satisfied, the agent sends change value requests to its
inputs. The behavior of the agent is illustrated on Figure 5.7a.

It should be noted that, to estimate the input values required to satisfy the constraint on
its computed value, this agent employs the same technique as the model agent (i.e. an external
optimizer).

5.2.5 Objective Agent

The objective agent is in charge of an objective of the problem. This agent sends requests to
its inputs aiming to improve its objective, and recalculates the objective when receiving value
changed messages from its inputs.

This agent uses an external optimizer to estimate input values that would improve the
objective, in the same way than the model and constraint agents.

74 Tom Jorquera

5.2. From an Optimization Problem to a Multi-Agent System

II

This agent modeling is the most direct and inclusive, considering every element of the
problem as an autonomous agent. On Figure 5.8 we represent a class diagram of the agents,
which is a slightly modified version of the domain class diagram of Figure 5.2. This modified
class diagram puts more clearly in light what are the effective agents and how the agents are
related with each others by input/output relationships. The bipartite nature of the graph in
regard of value agents and internal model agents is clearly apparent. Two additional, non-agent
entities, the internal model and the external optimizer also made an appearance. The respective
roles of these two entities will be detailed in the next chapters.

An Adaptive MAS for Self-Organizing Continuous Optimization 75

6 Agents Behavior

We will now discuss the behavior of the five agent types identified in the previous chapter.
The functioning of the system can be divided into two main tasks: problem simulation and
collective solving.

Problem simulation can be seen as the equivalent of the analysis of classical MDO methods.
The agents behavioral rules related to problem simulation concern the propagation of the
values of design variables to the models and criteria. For this part, the agents will exchange
inform messages that contain calculated values. The “messages flow” is top-down: the initial
inform messages will be emitted by the variable agents and will be propagated down to the
criteria agents. An illustration of the simulation messages flow is shown on Figure 6.1a.

Collective solving concerns the optimization of the problem. The agent behavioral rules
related to collective solving are about satisfying the constraints while improving the objectives.
For this part, the agents will exchange request messages which contain desired variations of
values. The “messages flow” is bottom-up: the initial request messages will be emitted by the
criteria agents and propagated up to variable agents. An illustration of the solving messages
flow is shown on Figure 6.1b.

The agents behaviors regarding these two parts can be studied independently, we will
thus present them separately. It is however important to remember that these two parts
are executed simultaneously. At runtime the agents will simulate the problem and solve
it in parallel. Moreover, the different parts of the system will not necessarily work in a
synchronous fashion. The effective messages flow of the system will more probably be akin
to the Figure 6.1c.

6.1 Problem Simulation

In this section we will present the agents behaviors related to the simulation of the
problem. Regarding this part, the main concern of the agents is to ensure consistency
between the values of the design variables and the produced outputs. To this end, the agents
will propagate Inform messages through the system.

An inform message carries a new value v. The exact semantic of this information slightly
changes depending on which agents are involved:

3 If the message is sent from a value agent (variable or output) to a model or criterion
agent, it indicates to the receiving agent that the sending agent has changed of value.

An Adaptive MAS for Self-Organizing Continuous Optimization 77

II

Agents Behavior

pi_cbpr

Turbofan
Model

fr

fr >= 4

s

min s
max
Tdm0

Tdm0

s <= 155

(a) Informs flow for simulation.

pi_cbpr

Turbofan
Model

fr

fr >= 4

s

min s
max
Tdm0

Tdm0

s <= 155

(b) Requests flow for solving.
pi_cbpr

Turbofan
Model

fr

fr >= 4

s

min s
max
Tdm0

Tdm0

s <= 155

(c) Effective messages flow.

Figure 6.1: Messages flow for simulation and solving.

3 If the message is sent from a model agent to an output agent, it indicates to the receiving
agent that the model has calculated its new value.

In practice this distinction is not fundamentally important to understand the functioning
of the system.

As stated in section 5.1, models, constraints and objectives involve a specific calculation
operation. For example the constraint x− y ≥ 0 implies the very basic calculation x− y. We
regroup these operations under the term internal models. As we said, no specific hypothesis
is done concerning the nature of an internal model and, more importantly, no distinction is
done regarding the internal model used by a model agent and the one used by an objective
or a constraint agent.
While in some cases specific informations can be known regarding the nature of an internal
model, in the most general case these internal models can be seen as black boxes and are
handled as such by the agents.

6.1.1 Variable Agent

Regarding problem simulation, the role of the variable agent is to ensure that the agents
to which it is connected know its current value. A variable agent has to send new Inform
messages when:

3 new agents are connected to it (typically at the creation of the system).
3 it decides to change its value based on received requests (see 6.2.1).

78 Tom Jorquera

6.1. Problem Simulation

II

3 the designer changed its value.

The behavior of the variable agent is summarized in algorithm 6.1. First of all the variable
checks if it changed its value (typically as the consequence of receiving requests during the
solving phase). If it is the case it sends its new value to its contacts. It then checks if new
agents have requested to be added to its contacts. If it is the case, it adds them and sends
them its current value, whether its value changed or not, in order for the new contacts to be
informed of the current value of the variable.

Algorithm 6.1: Problem Simulation – Variable Agent Behavior

C ← previously connected agents
C′ ← newly connected agents
v← previous value
v′ ← new value
// notify contacts of value change
if v 6= v′ then

v← v′

foreach agent a ∈ C do
send(a, new Inform(v))

end
end
// send its value to new contacts
// even if it did not change
if C′ 6= ∅ then

foreach agent a ∈ C′ do
send(a, new Inform(v))

end
C ← C

⋃
C′// memorize new connected agents

end

6.1.2 Model Agent

A model agent must maintain consistency between its inputs and outputs. That is, it must
ensure that the agents handling its output variables are informed of their new values when
the inputs changes. When receiving an Inform message from one of the agents controlling its
inputs, the model agent reevaluates its internal model, taking the new value into account.
Using the new values produced by the internal model, the model agent then sends Inform
messages to the agents responsible of its outputs.

All outputs of a model agent are not necessarily associated with an output agent. For
example, if the designer is not interested by the value represented by one of the outputs, he
is not required to represent it by an agent. In this case the model agent will silently calculate
the new value of the output at the same time than the others, but will not propagate it1.

However, as the problem is dynamic, the designer can decide at any time to connect a
new output agent to a previously unconnected output. In this case, the model agent must

1Remember that the internal model of the agent is a black box, consequently the agent cannot choose to
evaluate it partially. If the evaluation of the output could has been done independently from the others, it may be
preferable to create two separate models

An Adaptive MAS for Self-Organizing Continuous Optimization 79

II

Agents Behavior

send to the output agent the last value it calculated for this output.

The behavior of the model agent is summarized in algorithm 6.2.

Algorithm 6.2: Problem Simulation – Model Agent Behavior

C ← previously connected output agents
C′ ← newly connected output agents
{vo} ← previous output values
{vi} ← new input values
if {vi} 6= ∅ then

// use internal model to recalculate outputs
{vo} ← Internal_Model({vi})
foreach agent ao ∈ C do

// inform output agents of their new value
send(ao, new Inform(vo))

end
end
// send their values to new outputs
// even if they did not change
if C′ 6= ∅ then

foreach agent ao ∈ C′ do
send(ao, new Inform(vo))

end
C ← C

⋃
C′// memorize new outputs agents

end

6.1.3 Output Agent

For the problem simulation, the output agent has a very similar role to the variable agent.
It tries to ensure that the agents to which it is connected know its current value. It has to
change new inform messages when:

3 new agents are connected to it.
3 it receives an inform message from its model agent, indicating it its new value.

Unlike the variable agent, the output agent value should not be directly changed by the
designer, as it represents a non-free variable.

The behavior of the output agent is summarized in algorithm 6.3.

At runtime, the designer can interact with the MAS. Among the possible interactions, the
designer can remove the model calculating an output. In this case the output agent would
become a variable agent and change its behavior accordingly. The inverse transformation
is also possible, a variable agent could suddenly be “plugged” in an output of a model and
would become an output agent.

6.1.4 Constraint/Objective Agent

In regard to problem simulation, constraint and objective agents only role is to update
their value based on the Inform they receive from their inputs.

80 Tom Jorquera

6.2. Collective Solving

II

Algorithm 6.3: Problem Simulation – Output Agent Behavior

C ← previously connected output agents
C′ ← newly connected output agents
v← previous value
v′ ← new value
// notify output contacts of value change
if v 6= v′ then

v← v′

foreach agent a ∈ C do
send(a, new Inform(v))

end
end
// send its value to new output contacts,
// even if it did not change
if C′ 6= ∅ then

foreach agent a ∈ C′ do
send(a, new Inform(v))

end
C ← C

⋃
C′// memorize new connected agents

end

Their behavior is summarized in algorithm 6.4.

Algorithm 6.4: Problem Simulation – Constraint/Objective Agent Behavior

{vi} ← new input values
if {vi} 6= ∅ then

// use internal model to recalculate outputs
{v′o} ← Internal_Model({vi})

end

6.2 Collective Solving

During solving, the criteria agents try to improve their local goals. That is, the constraint
agents try to keep their constraint satisfied, while the objective agents try to improve their
objective. To this end, they send Request messages to the agents controlling their inputs,
asking them to change value. The others agents have to propagate these requests toward the
variable agents in the most adequate way.

However a specific difficulty arises. As explained in the previous section, model, con-
straint and objective agents manipulate the underlying equations (or algorithms, or responses
surfaces etc.) of the problem through internal models, which are in most cases black boxes. In
this case, how can constraint agents know which values to ask to satisfy their constraint? How
can objective agents know the values that improve their objective? How can model agents
know which values for their inputs could produce the values required by their outputs?
For the internal model agents to be able to work, the designer must supply them with an
external optimizer. The role of this optimizer is the following: if we see an internal model

An Adaptive MAS for Self-Organizing Continuous Optimization 81

II

Agents Behavior

z

x y

Request: 2

M z = x + y

(a) The model agent receives a
request.

z

x y

OptimizerM z = x + y

z = x + y

goal: z = 2

model:

solution:
x = 1, y = 1

(b) The model agent resolves the
request using an external opti-
mizer.

z

x y

Request: 1

M z = x + y

Request: 1

(c) The model agent transmits
the new requests to its inputs.

Figure 6.2: Use of an external optimizer.

as a function2 providing an output O from a set of input I, what we need is to be able to
estimate the inverse function, providing the values of I corresponding to a specific O. This
specific problem can easily be expressed as a classical optimization problem in itself, which
can be solved by classical optimization methods. As the agents manipulate black boxes, it is
(nearly3) impossible for them to do this estimation by themselves. The designer, which has a
more advanced knowledge of the internal models, can provide an adequate optimization
method for each of them. In the most general case it can be assumed that each agent in charge
of an internal model uses its own specific optimizer. However in practice several instances of
the same optimizer can be used by different agents, if the designer deems that their models
present sufficient similar characteristics for the optimization method to be efficient for each of
them. An example of use of an external optimizer by a model agent can be seen on Figure 6.2.

As a remark, finding the inputs corresponding to a desired value is not directly an
optimization problem, but is trivial to translate into one. For example, the problem can be
formulated as finding I that minimizes (f (I)−O)2. Alternatively, the objective-function can
be replaced by a constraint such as f (I) = O. We do not impose a specific transformation
method, letting the expert which implements the optimizer chooses which transformation is
the most efficient in regard to the specificities of the optimization method.

With this specificity in mind, let us now examine the behavior of the different agent types
in the context of collective solving.

6.2.1 Variable Agent

During solving, a variable agent is susceptible to receive change requests from other
agents. When a variable agent receives a change request, it tries to change its own value in
order to accommodate the requester while taking into account the previous demands of the
rest of its neighbors. To this end, the variable agent uses an exploration strategy based on

2Calling an internal model a function is a simplification. Since it is a black box it may have an internal state.
Consequently the same inputs may not always produce the same outputs

3We will see in section 6.2.2 how the agents can extract enough information at runtime to provide their own
basic optimizer

82 Tom Jorquera

6.2. Collective Solving

II

Adaptive Value Tracker (AVT) [LCG11]. The AVT is an adaptation of dichotomous search for
dynamic values. The idea is to change value according to the direction which is requested
and the direction of the past requests. While the value varies in the same direction, the
variation delta is increased so the value varies more and more. As soon as the requested
variation changes, it means that the variable went past the good value, so the variation delta
is reduced. This capability to take into account a changing solution allows the variable agent
to continuously search for an unknown dynamic target value. This capability is required for
the system to be able to adapt to changes made by the engineer during the solving process.

The algorithm of the AVT is the following. Given the following variables:

3 vt ∈ [vmin; vmax] the current value of the AVT.

3 ∆t ∈ [∆min; ∆max] the last variation of vt.

3 λi the increase coefficient of the AVT (λi > 1).

3 λd the decrease coefficient of the AVT (0 < λd < 1).

When receiving a new adjustment feedback Fbt ∈ {↑; ↓;∼} (corresponding respectively
to “increase current value”, “decrease current value” and “keep current value”), a new value
vt+1 is calculated using Table 6.1.

Table 6.1: AVT behavior

Fbt
↑ ↓ ∼

↑ ∆t = ∆t−1 × λi ∆t = ∆t−1 × λd ∆t = ∆t−1 × λd
vt+1 = vt + ∆t vt+1 = vt − ∆t vt+1 = vt

Fbt−1 ↓ ∆t = ∆t−1 × λd ∆t = ∆t−1 × λi ∆t = ∆t−1 × λd
vt+1 = vt + ∆t vt+1 = vt − ∆t vt+1 = vt

∼ ∆t = ∆t−1 ∆t = ∆t−1 ∆t = ∆t−1 × λd
vt+1 = vt + ∆t vt+1 = vt − ∆t vt+1 = vt

In our experiments we kept the default proposed values of λi = 2 and λd =
1
3

.

One could wonder why the variable agent uses such a seemingly contrived method
instead of just taking the requested value. It should be remembered that the variable agent
can be connected to several parts of the problem and can receive contradictory requests from
different origins over time (as we said, the case where the variable receives contradictory
requests at the same time will also be studied later). Thus, the variable agent must have a
way to take into account these contradictory requirements to find an adequate compromise.
Moreover, until the system (or at least this part of it) has stabilized, the values requested has
very little chance of being exact. The value can thus be considered as an indication of the
direction in which the requesting agent desire the variable to go. As the system stabilizes,
the precision of the AVT is improved and the value of the variable is closer and closer to the
exact correct value.

While changing value based not on the value requested but on the direction can seem
paradoxical, it is necessary. Since all agents have only a local view of the system (itself

An Adaptive MAS for Self-Organizing Continuous Optimization 83

II

Agents Behavior

plus its neighbors) the requests they make are often approximate. Consequently they need
to iterate several times. If the search space is large, the system could take a long time to
converge toward the solution. By using a near-dichotomous strategy, we greatly accelerate
this convergence.

This behavior is summarized in algorithm 6.5.

Algorithm 6.5: Collective Solving – Variable Agent Behavior

v← old value
vr ← requested value
avt← Adaptive Value Tracker module
if v < vr then

f eedback← INCREASE
else

f eedback← DECREASE
end
v′ ← avt.adjustValue(f eedback)

6.2.2 Model Agent

The model agent is responsible for transmitting requests it receives from its outputs to
its inputs. To be able to translate the ingoing requests to its inputs, the model agent uses an
external optimizer, as presented at the start of the section. When receiving a request from
one of its outputs, the model agent calls the external optimizer, which provides it with the
adequate input values corresponding to the request. The model agent then sends requests
corresponding to these values to its inputs. While the model agent can seem to be very
simplistic, we will see in section 6.3 how its behavior can be expanded to handle multiple
problematic cases.

The behavior of the model agent is summarized in algorithm 6.6.

Algorithm 6.6: Collective Solving – Model Agent Behavior

vr ← requested value from output
M← the internal model of the agent
O← associated optimizer
// get the corresponding input values
// estimated by the optimizer

{vi
r} ←O(vr, M)

foreach i ∈ input controlling agents do
// send the requests corresponding to the estimated values

send(i, new Request(vi
r))

end

Using an Internal Optimization Algorithm as an Alternative to External Optimizers

At the start of the section we stated that, since its internal model is a black box, the model
agent cannot in itself perform the “bottom-up” translation from the values requested by its

84 Tom Jorquera

6.2. Collective Solving

II

outputs to values for its inputs, requiring an external optimizer to carry such task. While
this is true at the start of the process, the model agent can at runtime observe the values
returned by the internal model and make some estimations about its internal topology. We
present now such a mechanism which can be integrated into model agents, capable of taking
advantage of the functioning of the agent using simple black box optimization techniques.

This mechanism integrates itself during the simulation behavior of the agent. Remember
that, as presented in section 6.1.2, when receiving a new value from one of its inputs the
model agent calls its internal model to recalculate the values of its outputs. At this step, the
agent can observe the impact of the variation of the input on each output. We call correlation
between the input i and output o the variation of o relative to the variation of i, calculated as
vt+1

o − vt
o

vt+1
i − vt

i

. This correlation can be seen as a local linear approximation of the partial derivative

δo
δi

. This correlation can then be used during solving to estimate the required changes from
the inputs to satisfy a change requested by an output.
For example, suppose a model with one input i and one output o. During simulation, the
value of i changes from 1 to 2. As a consequence the internal model provides a change of o

from -2 to -4. Thus the correlation between i and o is
−4− (−2)

2− 1
= −2. The output o then

sends a request to the model agent to take the value 4. The agent can estimate that for o to

take the value 4, i needs to take the value
4
−2

= −2. The complete formula when several

inputs are involved in the calculus of o is presented with the summary of the mechanism in
algorithm 6.7.

We presented here a very simple learning mechanism for the agent to default when
it is not provided with an external optimizer. This mechanism is voluntarily simple and
lightweight, in order to be applicable to a broad range of model topologies. While it is possi-
ble to make further refinements to improve its results, we believe that such needs are better
covered by the use of external optimizers provided by experts of the problem application
domain, which can be tailored for specific needs.
Interestingly, our approximation technique can also be used to create local linear approxima-
tions of complex black box models. We will see in the later sections how such information
can be used by the system to solve some corner cases.

6.2.3 Output Agent

Output agents have a more “passive” role than variable agents during problem solving.
As it depends on a model agent for its value, an output agent will simply transmit the
requests it receives to its model, as summarized in algorithm 6.8.

6.2.4 Constraint Agent

With the objective agents, the constraint agents are the origins of the requests which
are propagated into the system. The goal of a constraint agent is to ensure its constraint
is satisfied. To this end, the constraint agent calculates a target value for the constraint,
estimates corresponding target values for its inputs and sends them as requests to the agents
in charge of these inputs. When the constraint is satisfied, the constraint agent tries to ensure

An Adaptive MAS for Self-Organizing Continuous Optimization 85

II

Agents Behavior

Algorithm 6.7: Collective Solving – Internal Optimizer Algorithm

// estimating correlation deltas
I ← current input values
O← current output values
foreach in f orm ∈ {received inform messages} do

input← the input concerned by in f orm
it−1 ← old value of input
it ← new value of input
{ot−1} ← { old value of o, ∀o ∈ O}
// reevaluate the outputs using the new value of the inform
// (the others inputs are not updated)
It ← {i ∈ I, i 6= it−1} ∪ {it}
{ot} ← M(It)

// for each output, calculate the new correlation δ
foreach o ∈ O do

δi,o ←
ot − ot−1

it − it−1
end

end

// linear approximation optimization
o∗ ← target value for o
∆o ← o∗ − ocurrent
{δi} ← estimated correlations between all the inputs and the output
foreach i ∈ inputs do

// calculate the input variation

∆i ← ∆o ×
δi

∑
i∈inputs

δi

end

Algorithm 6.8: Collective Solving – Output Agent Behavior

vr ← requested value
m← the model agent responsible of the output
send(m, new Request(vr))
// forward the request to the model agent

86 Tom Jorquera

6.2. Collective Solving

II

it will keep being satisfied. To this end it continues to send requests to move its current value
further and further from the constraint threshold.

The problem of finding corresponding input values for its target value is similar to the
one of the model agent of finding adequate input values from the outputs. As we said at the
end of section 5.1, constraint agents (and objective agents) are similar to model agents in the
fact that both have control of an internal model. Thus, constraint agents can use an external
optimizer to find adequate target values for its inputs. The only difference with model agents
being that, instead of having a value requested by an output, the constraint agent estimates
itself its own target value.
In the same way, constraint agents can use the same internal optimization mechanism than
model agents presented in algorithm 6.7, when not provided with an external optimizer.

The behavior of a constraint agent with a “lower or equal” constraint is described in
algorithm 6.9. This algorithm is easily adapted to the others constraint types.

Algorithm 6.9: Collective Solving – Constraint Agent Behavior

v← current value
vt ← threshold value
∆∗ ← |v− vt|
{v∗i } ← Optimizer(v− ∆∗)
// can be either external optimizer or internal optimization

mechanism
foreach i← inputs do

// change the estimated target value to the input
send(i, new Request(v∗i))

end

It should be noted that, even when the constraint is satisfied, the constraint agent con-
tinues to send requests to its inputs. This behavior can be justified by several reasons. First
of all, the goal of the constraint agent is to ensure its constraint stays satisfied, so when the
constraint is already satisfied the constraint agent has interest in “pushing” its current value
afar from the constraint frontier.
The other reason is to help its neighbors agents to keep a coherent view of their relations.
Indeed, as the system is interactive, the designer can decide at any time to remove or change
the constraint. As a consequence it is not possible for the agents to simply keep in memory
the constraints they are linked to, as these informations can become obsolete at any time. A
simple way to remedy this situation is for the constraint to not assume that the others agents
will memorize its requirements, and to keep sending them requests.

6.2.5 Objective Agent

Along with constraint agents, the objective agents are the origins of the requests which
are propagated into the system. The goal of an objective agent is to improve its objective. To
this end, the objective agent iteratively estimates a new target value for its objective, finds
the corresponding input target values and sends them as requests to the input agents. The
behavior of the objective agent in this regard is quite similar to the one of the constraint agent.
The difference is that, while the constraint agent has a reference value to target (the threshold

An Adaptive MAS for Self-Organizing Continuous Optimization 87

II

Agents Behavior

value), the objective agent has no such value. Instead, the objective agent will target a new
value based on the last variation of its value.

Like the constraint and model agents, the objective agent can use an external optimizer
to find the corresponding input values, or can use the internal optimization mechanism
presented in algorithm 6.7.

The behavior of an objective agent with a “minimize” objective is described in algorithm
6.10. This algorithm is easily adapted to a maximization objective.

Algorithm 6.10: Collective Solving – Objective Agent Behavior

v← current value
∆t−1 ← last variation of value

{v∗i } ← Optimizer(v− ∆t−1)
// can be either external optimizer or internal optimization

mechanism
foreach i ∈ inputs do

// change the estimated target value to the input
send(i, new Request(v∗i))

end

It is interesting to note that an objective agent exhibits a behavior similar to the one of the
constraint agent, but for slightly different reasons. While the constraint agent continuously
sends requests in order to make its constraint safer and safer, the objective agent continuously
sends requests because it can never know if it reached the best value for its objective. An
objective agent is essentially “blind”, as the objective is a black box, and must rely on the exter-
nal optimizer (or the internal optimization mechanism) in order to improve it. Consequently,
the objective agent never stops trying to find a better value. As with constraint agents, this
mechanism is quite handy in the context of interactive optimization, as the designer can
completely change the nature of the objective at any moment.

An important point is that each agent only has a partial knowledge and local strategy.
No agent is in charge of the optimization of the system as a whole, or even of a subset of the
other agents. Contrary to the classical MDO methods presented earlier, the solving of the
problem is not directed by a predefined methodology, but by the structure of the problem
itself. The emerging global strategy is unique and adapted to the problem.

6.2.6 Adaptive Agents and Co-design

As previously said, one of our goals is for the system to be able to adapt to changes
made in their environment, in order to allow the expert to experiment with the problem
and observe the impact on the solution. This capability is especially relevant when the
optimization problem is the representation of a complex system to design, as the designer
may often have only an imperfect knowledge about the system to be designed. Using our
system the designer can change the problem and directly observe the effects on the design.

However, in the behavioral algorithms we presented, we made nearly no mention of

88 Tom Jorquera

6.2. Collective Solving

II

Algorithm 6.11: Agents Behaviors Synthesis

behavior of Model Agent
repeat

analyze received messages
if received new information messages then

recalculate outputs
inform depending agents

end
if received new requests then

use optimizer to find adequate inputs
propagate requests to input agents

end
until resolution end

behavior of Variable Agent
repeat

analyze received messages
if received new requests then

adjust value
inform depending agents

end
until resolution end

behavior of Output Agent
repeat

analyze received messages
if received new information messages then

update its value
inform depending agents

end
if received new requests then

transmit requests to model agent
end

until resolution end
behavior of Constraint/Objective Agent

repeat
analyze received messages
if received new information messages then

update its value
use optimizer to find adequate inputs
send new requests to variable/output agents

end
until resolution end

An Adaptive MAS for Self-Organizing Continuous Optimization 89

II

Agents Behavior

specific mechanisms for handling dynamic aspects of the problem. The reason is simple:
these mechanisms are already sufficient to take into account such dynamics, as we will
demonstrate in the experiments. This intriguing property can be explained by two factors.
First of all the agents had to be designed considering that previous information they received
can become outdated, as the different parts of the optimization problem do not necessarily
converge at the same rate. To this first observation is added the fact that each agent has to
keep its reasoning to a local level, since an agent trying to reason on a global level would
eventually be overwhelmed by the complexity of the problem.

The consequence of these two factors is that agents indifferently handle changes caused
by the “normal” exploration of the search space and changes made to the optimization
problem by the designer. Indeed, from the point of view of an agent, a complex problem and
a dynamically changing problem are indistinguishable, and mechanisms tailored to handle
one will also help solving the other.

Therefore we can say that, by forcing ourselves to keep the agent behavior at a local level,
we gained another advantage in addition of the scalability properties of the MAS. Complex
optimization problems require the agent reasoning to be kept at a local level, both in space
(neighborhood and information perceived by the agents) and in time (memorization of the
information). In these conditions, the agent is then “naturally” able to take external changes
into account, as they are not distinguishable, from its point of view, from “normal” changes
due to the optimization process. This characteristic which could at first sight be perceived as
a handicap for the agent is in fact a bearer of several benefits.

6.3 Non-Cooperative Situations

In the previous sections, we presented the basic agents behaviors of our system. Algorithm
6.11 is a synthesis of the behavior of each agent type. While this basic behavior could suffice
in very simple test cases, it is not sufficient to handle the specificities of most continuous
optimization problem configurations. In these situations, this nominal agent behavior would
lead to a suboptimal result.
Based on the AMAS theory (presented in section 4.2), we can consider these configurations
to be Non Cooperative Situations (NCSs), as they represent a situation where, because of
a shortcoming in the behavior of the agents, the system does not produce an adequate
functionality (in our case, the optimization of the problem).
Consequently, we need for each NCS to provide the agents with specific mechanisms to:

1. detect occurring instances of the NCS
2. solve detected instances of the NCS
3. if possible, anticipate future instances of the NCS and avoid them

Methodologically, by studying how the system handles specific problems with character-
istics which are specific to continuous optimization (interdependencies, conflicting criteria
etc.), we identified several problematic configuration types, and defined different cooperation
mechanisms for the agents that allow the system to correctly solve problems which exhibit
these characteristics.

We will now present the NCSs we identified as well as the solving mechanisms we
propose to handle them.

90 Tom Jorquera

6.3. Non-Cooperative Situations

II

a1

a1>=10mina1

Figure 6.3: Conflicting trajectories example.

6.3.1 Conflicting Requests

The first problematic configuration, and arguably the most obvious, is the one where an
agent is in position of receiving simultaneous conflicting requests. This situation concerns
every agent which is susceptible to receive requests: variable, model and output agents. This
situation can be qualified as a Conflict NCS, as the requesting agents ask for contradictory
modifications of their environment. A minimal example of configuration in which conflicting
requests may appear is shown in Figure 6.3.

When such an agent receives contradictory requests, it needs a way to select which request
to apply and which request to reject. We can intuitively see how this decision should be
based on the current state of the requesting agents. For example, when receiving requests
both a satisfied and a non-satisfied constraint, a variable agent should favor the non-satisfied
one. In order for the agents to be able to make this decision, we need to provide them a way
to compare the states of different agents.

Solving Conflicting Requests using Criticality To this end, we introduce a new mech-
anism based on a specific measure called criticality. This measure represents the state of
dissatisfaction of the agent regarding its local goal. Each agent is in charge of estimating its
own criticality and providing it to the other agents4. The role of this measure is to aggregate
into a single comparable value all the relevant indicators regarding the state of the agent.
Having a single indicator of the state of the agent is interesting as it simplifies the reasoning
of the agents. In addition, this mechanism has the interesting property of limiting the infor-
mations transmitted to the others agents, which can be of interest in case of a distributed
optimization where data privacy is an issue. However the system designer has the difficult
task to provide the agents which adequate means to calculate their criticality. Also, in specific
cases, this information on the state of the agents is not sufficient to take the correct decision,
as we will see in the following sections.

In the proposed system, criticality is initially provided by constraint and objective agents
and is propagated in the system through their requests. Let us illustrate this with a constraint
of the type g(X) ≤ t, with X input of the constraint, g(X) the constraint equation and t
the threshold under which the constraint is satisfied. The basic requirements regarding
the criticality of this agent is to be low when the constraint is satisfied and high when the
constraint is violated. Thus, the criticality of this agent is function of its current value and of

4We do not concern ourselves with the problematic of trust here, each agent is assumed to provide the most
trustful and accurate information without cheating or lying. The use of measures such as criticality in open and
untrusted environments is in itself an interesting question to say the least.

An Adaptive MAS for Self-Organizing Continuous Optimization 91

II

Agents Behavior

criticalityt,η,ε(x) =

0 if x < t− ε ,
−γ(t− x− η)2/(2(ε− η)) + γ(t− x− η) + δ if t− ε ≤ x ≤ t− η,
γ(−t− x− η)2/(2η) + γ(−t− x− η) + δ if t− η ≤ x ≤ t,
1 if x > t

where
γ = −2/ε,

δ = −γ(ε− η)/2,
and 0 < η < ε.

(a) Analytical formulation.

0 0.5 1

0

0.5

1

input value

cr
it
ic
al
it
y

η = 1− ε/10
η = 1− ε/3
η = ε/2

η = ε/3

η = ε/10

(b) Shapes of criticality function of threshold t = 1 for ε = 1 and different η.

Figure 6.4: Criticality function of a constraint agent.

the threshold.

To compute it, we use the barrier function defined on Figure 6.4a. It takes as input x,
the current value of the constraint. It is parameterized by t, the threshold, and by η and ε

that both regulate the shape of the function as seen on Figure 6.4b. Its value always varies
between 0 and 1. The ε can be adjusted by a domain expert if needed: the higher it is, the
faster the constraint increases in criticality. In our experiments, we used ε = 0.1 and η was
set to roughly a third of ε, i.e. 0.03. This function allows a smooth transition between two
states and provides several interesting properties: it is continuous, differentiable, requires
few parameters, is computed quickly and is relatively easy to grasp.

The criticality of the other agents is determined as follow:

3 For objective agents: the criticality is set to an arbitrary constant value which must be
lower than 1. In our experiments we settled for a value of 0.5. This translates the fact
that, in the general case, an objective could theoretically always be improved, but is
less important to satisfy than a constraint.

3 For variable, output and model agents: the criticality is set to the highest criticality
among the received requests.

When the system converges to a solution, it stabilizes at a point where the maximum of
the criticalities of the agents is minimized.

An illustration of this mechanism can be seen on Figure 6.5. In this example, a variable
agent (with a current value of 3) receives contradictories requests from an objective (decrease)
and a constraint (increase). As the constraint is not satisfied, the criticality associated to its

92 Tom Jorquera

6.3. Non-Cooperative Situations

II

x

min x x >= 5

3

1 (0.5) 5 (0.8)

(a) The criterions send their requests and cur-
rent criticalities (in parenthesis).

x

min x x >= 5

5

5 5

(b) The variable agent selects the most critical
request and responds accordingly.

Figure 6.5: Criticality mechanism (the criticality of the requests is indicated in parenthesis).

6 6

12

12

12

12

18

18
24

+

+

-

−5 −4 −3 −2 −1 0
−5

−4

−3

−2

−1

0

Figure 6.6: Illustration of coordination requirements on a basin function with 3 different
trajectories.

request (0.85) is higher than the one of the objective (0.5). As a consequence the variable
agent selects the request of the constraint agent and increases its value.

Maintaining a Correct Trajectory with Successive Contradictory Requests Another as-
pect of the handling of contradictory requests concerns the possibility for the agent to receive
successively contradictory requests, possibly from the same origin. This situation can arise
from the fact that some problem topologies requires the agents to move in a coordinated way
across the search space. This difficulty is illustrated on Figure 6.6. On this figure is presented
a 2-inputs functions we want to minimize (top-right corner), and 3 different trajectories.
For each of these trajectories, the two inputs vary in the same direction, but with different
strengths.
We can see that, for the two dashed trajectories, the objective-function increases as the
variation of one of the input is much greater than the variation of the other. Only on the
non-dashed trajectory the objective is actually improved. The implication is that, even if all
the inputs vary in the correct direction, they can cause a degradation of the objective if they
do not coordinate the strengths of their variations.

With the nominal behavior, the agents would iterate and notice their mistake, compensat-
ing by changing direction. However this behavior would lead to a very inefficient trajectory.
Consequently it is much more preferable that the variable agents coordinate their respective
movements in order to maintain a good trajectory. However, these variable are not related to

An Adaptive MAS for Self-Organizing Continuous Optimization 93

II

Agents Behavior

each others in any way, and cannot communicate with each others. While we could create
additional links to make the variables communicate among themselves, it would violate
our locality principle. Instead, we propose a mechanism which base itself on the fact that
the agents do not directly know each others, but know that the others agents exist and are
cooperative. Consequently, by making careful adjustments and observing the feedback of
their environment, the agents can be able to estimate the impact of their variation in regard
of the variations of the others variable agents, and correct their movement in consequence.

The basic idea is for the variable agent to create a representation of the trajectory it is
following (in the 1-dimension space). It uses a trending trajectory measure, noted tt, whose
value varies between -1 and 1. A positive value for tt means that the variable follow an
increase trajectory, while a negative value implies a decrease trajectory. The higher the value of
|tt|, the stronger the confidence of the agent into the trajectory.

After the variable agent has selected a request, it updates tt based on the direction
requested. If the selected request asks the variable agent to decrease, tt is decreased and vice
versa. The exact impact of the new request on tt is controlled by a trending coefficient noted
αtrend, to which we attributed a value of 0.9, indicating a strong preference for maintaining a
consistent trajectory.
After updating tt, the agent will do the following:

3 tt if low (|tt| < 0.1) or does not contradict the request (both the request and tt indicate
the same direction), the request is applied as is.

3 if tt is high (|tt| > 0.1) and contradicts the request (the request and tt indicate opposite
directions), the agent does not apply the request, choosing instead to not change its
value.

3 in the special case where the request asks the agent not to change value, the agent does
so whatever the value of tt.

This behavior is described in algorithm 6.12.

Algorithm 6.12: Conflicting Requests - Speed Coordination

rs ← selected request

// get sign of variation required by current selected request
∆r ← valuecurrent − valuers

σr ←

−1 i f ∆r < 0

0 i f ∆r = 0
1 i f ∆r > 0

// update trending trajectory
tt←memorized trending trajectory
tt← tt× αtrend + σr(1− αtrend)

// apply the coordination action (using Table 6.2)
coordination_action(tt, σr)

Anticipating Criticality Variations of Conflicting Requests This simple comparison of the
criticalities at a given instant is the main way criticality was used in previous application of
the AMAS theory. Since the goal of the agents is to reduce the maximal criticality among their

94 Tom Jorquera

6.3. Non-Cooperative Situations

II

Table 6.2: Conflicting Requests - Coordination Actions

tt > −0.1 < 0.1

σr
+ NOMINAL WAIT
0 WAIT WAIT
- WAIT NOMINAL

neighbors, selecting the request of the most critical neighbor is a basic heuristic to achieve this
end. We provide here an additional refinement by making the agents anticipate the effects of
their actions on the criticality of the other agents.
The agent will memorize the requests and observe how the criticality of the next requests
vary based on its actions. From on this observation, the agent makes an estimation of the
impact of its action on the criticality of the senders, using the approximation hypothesis that
varying in the same direction will cause the same variation of criticality on the senders. These
estimations allow the agent to make a prediction on the future criticalities of the senders in
the cases where it increases or decreases.

By taking in account not only the “spacial” aspect (which neighbor has what criticality)
but also on the “temporal” aspect of its action (what will be the consequence of my action on
my neighbors), the agent can make a more adequate decision.

The agent deems two requests rmax and r, where critrmax > critr, to be equivalent in three
cases:

3 When the difference between their criticalities is lower than a given threshold tcrit

|critrmax − critr| < tcrit.
3 When the predicted difference between their criticalities is lower than tcrit

|(criticalityrmax + ∆rmax)− (criticalityr + ∆r)| < tcrit.
3 When the predicted criticality of the least critical request r is greater than the predicted

criticality of the most critical one rmax

criticalityrmax + ∆rmax < criticalityr + ∆r.

This behavior is presented in algorithm 6.13.

(We chose in our experiments to assign the comparison threshold tcrit a somewhat arbi-
trary value of 2% of the maximum criticality)

Each of these cases represent a situation where the two conflicting agents are reaching
an equilibrium state. In these cases the agent cannot simply discriminate using only the
criticality information. We will now see in section 6.3.2 an additional mechanism for such
cases.

6.3.2 Cooperative Trajectories

6.3.2.1 For Variable Agents

This NCS can be seen as an extension of the previous one (conflicting requests). It
occurs when a variable agent receives requests from its outputs which lead to contradictory
changes on its inputs (Conflict NCS). We presented in the previous section how using criticality

An Adaptive MAS for Self-Organizing Continuous Optimization 95

II

Agents Behavior

Algorithm 6.13: Detecting Equivalent Contradictory Requests using Criticality Antici-
pation

R← received requests
Rmem ← the previous memorized requests
tcrit ← criticality comparison threshold

// calculate criticality variations
foreach r ∈ R do

∆r
c ← |criticalityr − criticalityrmem |

end
// select most critical request
rmax ← arg max

r∈R
criticalityr

// find equivalent requests

Req ← r ∈ R− {rmax} :

|criticalityrmax − criticalityr| < tcrit

or |(criticalityrmax + ∆rmax)− (criticalityr + ∆r)| < tcrit

or criticalityrmax + ∆rmax < criticalityr + ∆r

// update memory
Rmem ← R

a1 a2

maxa1+2a2min2a1+a2

Figure 6.7: Cooperative trajectories for variable agents example.

the agent could discriminate between the requests by choosing to satisfy the most critical.
However, in some specific cases, this mechanism is not the most efficient. Let us take a simple
example, graphically represented in Figure 6.8.

Suppose the following problem:

Minimize 2a1 + a2

Maximize a1 + 2a2

The graphical representation of this problem is shown in Figure 6.7.

Using conflicting requests mechanisms, each variable agent would, upon receiving re-
quests coming from the objective and constraint agents, choose to fully satisfy the most
critical request, disregarding completely the other. In this example, if the request of b1, the
first objective agent, is the most critical, a1 and a2 would both to decrease, they would both to
increase if the request of b2, the second objective agent, was the most critical.
With this mechanism, the variable agents only have two possibilities: fully satisfy the request

96 Tom Jorquera

6.3. Non-Cooperative Situations

II

of b1, or fully satisfy the request of b2. However we can easily observe how, in this specific
problem, the input variables a1 and a2 have different impacts on the two objectives. A varia-
tion of 1 for the variable a1 will change the first objective b1 by 2 and the second one b2 by 1,
while a variation of 1 for the variable a2 will have the inverse effect.

In such cases, the agents would start by fully helping the most critical to stabilize to a
point where the criticalities of both requests are balanced., even if the point is not the most
optimal.

Cooperative Trajectories using Participations This observation leads to a third possibility:
trying to satisfy both requests at once by satisfying for each variable agent the request on
which it has the most “impact”. Doing so allows a most efficient exploration of the search
space by improving several criteria at once.

This cooperative behavior intervenes only when the variable agent receives multiple
contradictory requests with equivalent criticalities (i.e., the agents have reached the point
where the criticalities are balanced). In this case, the agent cannot discriminate between the
requests using the Conflicting requests cooperative mechanism, as the requests are deemed
to be equally important. When the criticalities of the contradictory agents are balanced, the
helping agents must now try to improve the situations of both agents simultaneously. The
goal is to improve the situation of both contradictory agents while keeping the equilibrium.

As the criticalities of the contradictory agents are balanced, the variable agents need an
additional information in order to make an adequate action. To do so, we introduce a new
measure called participation, propagated with the requests exchanged between agent.

The meaning of this measure is the following: when an agent A receives a request from
an agent B, containing a participation p, it means that B estimated the relative impact of A
on the request regarding the impact of its others inputs to be p (p ∈ [0, 1]).

To estimate the participation, we base ourselves on the correlation estimation mechanism
introduced in section 6.2.2. The participation of an agent given by a request is thus calculated
as follow:

3 Constraint/Objective agent: participationi =
|correlationi|

∑
j∈I
|correlationj|

3 Model agent: participationi,o
|correlationi,o|

∑
j∈I
|correlationj,o|

× participationrequest

3 Variable agent: the participation of the received request is propagated as is

When a variable agent receives contradictory requests which are deemed to be of equiva-
lent criticality, it chooses to move in the direction which for which the total participation of
the requests is the highest. This behavior is described in algorithm 6.14.

This mechanism allows for several variable agents to make a coordinated action and to
improve simultaneously the situation of each requesting agent. Interestingly this coordinated
action is made without any explicit communication between the different variable agents,
or without these agents even knowing each others existence. The participation measure
provides sufficient information to the agent by giving it its relative participation, giving also
an implicit information about the relative participation of the rest of the system.

An Adaptive MAS for Self-Organizing Continuous Optimization 97

II

Agents Behavior

Algorithm 6.14: Cooperative Trajectory - Variable Agent

Requiv ← selected requests of equivalent criticality
R− ← {r ∈ Requiv : valuer < valuecurrent}
R+ ← {r ∈ Requiv : valuer > valuecurrent}
if R− 6= ∅ ∧ R+ 6= ∅ then

// select direction with the highest total participation

Part− = ∑
r∈R−

participationr

Part+ = ∑
r∈R+

participationr

if |Part−| > |Part+| then
Rselected ← R−

else
Rselected ← R+

end
end

a1 a2

maxb2minb1

b1=2a1+a2
b2=a1+2a2

b1 b2

Figure 6.8: Cooperative trajectories for model agent example.

6.3.2.2 For Model Agents

We have seen in the previous section how it could be possible in some cases to propose a
more efficient exploration of the search space by making variable agents cooperatively adjust
their value based on the variation of the different requests they receive. However, if we take
the example problem, we can reformulate it as the following equivalent problem:

Minimize b1

Maximize b2

98 Tom Jorquera

6.3. Non-Cooperative Situations

II

Where b1, b2 are outputs of the model M(a1, a2) defined as

b1 =2a1 + a2

b2 =a1 + 2a2

Using this new formulation, the model agent will aggregate the requests it receives and
only transmit one request to each variable agent. Consequently the variable agents will not
be able to perceive the potential cooperative trajectory. In this case, it is the model agent
which must detect the possibility of a cooperative trajectory.

To this end, the model agent will use the same mechanisms than the variable agents.
First it translates the requests sent by its outputs in requests on its inputs (using the classical
propagation mechanisms). Then, for each input, the model agent will take the role of a
variable agent and apply the cooperative trajectory mechanism for selecting a request among
the requests destined to this input. After a request is selected for each input, the model agent
will send the requests to its inputs agents.
This behavior is described in algorithm 6.15.

Algorithm 6.15: Cooperative Trajectory - Model Agent

I ← the inputs set of the model agent
Rout ← received requests
O← associated optimizer
foreach i ∈ I do

// translate received requests into requests on the input

Rin
i ← {O(rout), ∀rout ∈ Rout}

// apply variable cooperative trajectory on the input
// (as described in algorithm 6.15)

r∗i ← cooperative_trajectory(i, Rin
i)

// send the selected request to i
send(i, new Request(r∗i))

end

6.3.3 Cycle Solving

A common difficulty regarding complex optimization problem (and complex systems in
general) is the existence of interdependencies (which can be thought as instances of feedback
loops). For example, for the design of an aircraft, one could try to increase the range of the
aircraft by increasing its fuel tank. But doing so, it increases the mass of the aircraft, which
in return decreases its range. This complex interdependency between range and mass will
appear in the analytical formulation as a cycle in the calculus of the models, i.e. to produce
its outputs OM, the Mass model will need the outputs OR calculated by the Range model,
taking itself in input the outputs OM of Mass:

OM =Mass(OR)

OR =Range(OM)

An Adaptive MAS for Self-Organizing Continuous Optimization 99

II

Agents Behavior

a1 a2

a1 = 2 a2 a2 = 2 a1

Figure 6.9: Diverging cycle example.

Such cycles in the problem formulation can pose severe challenge for the optimization
process. Once more, we must keep in mind that models must be handled as black boxes;
Consequently an analytical solving of the cycle is impossible. Consequently, it is the burden
of the agents to detect cycle and take correcting actions of required.

The most basic situation regarding such cycles concerns two directly interdependent
models (i.e each one using an output of the other as its input). However, much complex
cycles topologies may be encountered. For example, an arbitrary high number of models can
be successively chained together in one giant multi-step cycle, or several models can present
multiple interdependencies with each other.The solution for which such a cycle is stable (if it
exists) is called the fixed point.

As the system must work by iterating over these black boxes, the values of the outputs
will be iteratively recalculated and propagated between the models involved in the cycle.
Depending on the exact structure of the cycle, its effects on the problem solving can be
radically different. To illustrate this, let us take the simple following example:

y = a1× x

x = a2× y

where x, y are variables and a1, a2 fixed parameters.

The aim is to find coherent values for x and y. Since models are black boxes, so we cannot
directly infer the solution. Depending on the parameters a1 and a2 (and excluding the trivial
case of a1, a2 = 0), this structure behaves differently:

3 a1, a2 = 1: in this case any value for both x and y satisfies the problem, there is an
infinity of fixed points

3 a1, a2 < 1: in this case the system will converge toward the solution. The fixed point is
said to be attractive

3 a1, a2 > 1: in this case the system will diverge in the opposite direction of the fixed
point, which is said to be repulsive

The two first cases are benign, and do not impeded the solving process. The third case
however will disturb the solving process by moving the state of the system further and
further from the stable solution. The task of the agent is then twofold:

1. detect existing cycles
2. if a cycle is currently diverging, take a correcting action to ensure it converges

An example of diverging cycle is shown in Figure 6.9

100 Tom Jorquera

6.3. Non-Cooperative Situations

II

Detecting Cycles using Messages Signatures To address the detection of cycles, each
message is uniquely signed to register its origin. When an agent initiates a message sending
by itself (i.e. not as the result of a received message), it signs the message with its unique
agent “ID” and an unique message number. The association of these two elements is the
origin signature.

When an agent sends a message in response to a received message, it adds to the sent
message the origin signature of the message causing its action. This way, the signature origin
is preserved from message to message and can be used to pinpoint the origin of an activity of
the system.

The output agents will be in charge of detecting and handling cycles, as they are in the
best position for this. Indeed, being at the junction between criteria and models (or between
different models), they are often the ones that can detect cycles the earliest.

To detect a cycle, the output agent creates a correspondence table associating for each
origin agent the last signature it received from it. When receiving a message, the agent checks
its origin. If the origin agent is not present in the table, the agent adds it. If it is present, it
compares the new signature with the one it memorized. If the signatures are different, the
agent replaces the old signature with the new one (as the new signature corresponds to a
more recent request). If the two signatures match, then there is a cycle.

Finding Fixed Points In case of a cycle, the output agent must now determine if the cycle
is converging or diverging toward the fixed point. As in the general case all models are
black boxes, the output agent needs to observe the evolution of output values while iterating
through the cycle. If the difference between successive values is decreasing, the cycle is
converging toward the fixed point, else the cycle is diverging as the variables are going in
the “wrong direction”. To this end, the output agent memorizes the difference between its
old and new value, and continues as usual. When receiving the next message from the cycle,
it calculates the new difference which enables it to decide if the cycle is converging or not
toward the fixed point.

If the cycle is converging, the output agent does not need to do any special action. But in
case of a diverging cycle, instead of taking the requested value, the agent emits to its model
a request for the opposite direction (i.e., if the value of the output should have increased of
n, the agent will request a new value corresponding to a decrease of n). The request will
propagate through the cycle until the fixed point is found.

6.3.4 Hidden Dependencies

The fact that each agent has only a local and limited view of the problem is a requirement
for the system to be able to scale to arbitrary large problems. However this restriction can
prove to be problematic when, due to its limited perceptions, an agent makes a wrongful
assumption regarding its neighbors. The hidden dependency NCS happens when an agent
considers that the requests its makes to its input agents are independent while the two agents
are in fact dependent. The mistake of the requesting agent comes from the fact that the
dependency link between its two input agents is beyond its perception range.

Figure 6.10 is an illustration of a configuration which will lead to a hidden dependency

An Adaptive MAS for Self-Organizing Continuous Optimization 101

II

Agents Behavior

a1

a2

a2 = - ½a1

min a1 + a2

Figure 6.10: Hidden dependency example.

NCS. In this example, the objective agent min a1 + a2 will assume that the variable agents a1

and a2 are independent, while the value of a2 is in fact completely dependent from the one of
a1 (more precisely a2 = − 1

2 a1). In this context, the objective agent will send separate requests
to the two variable agents, asking them both to decrease. Since a2 is an output variable, it will
transmit the request to its model agent, which will in turn transmit it to a1. And since a2 and
a1 are negatively correlated, the transmitted request will ask a1 to increase. Consequently
a1 will receive two requests, one (directly from the objective) asking it to decrease, and one
(transmitted by a2) asking it to increase.
This behavior is described in algorithm 6.10.

This situation is clearly a NCS, as two requests having the same origin should not require
an agent to do contradictory actions. We will now propose a mechanism to allow the variable
agent a1 to solve the NCS efficiently.

Detecting Hidden Dependencies with Influences First of all the agent must identify the
NCS. This part proves to be quite easy using the origin signature information we introduced in
section 6.3.3. Since every message contains a field recording which agent was at the origin of
the request, any agent can know if two requests originate from the same agent by comparing
this origin field.
In our example, the agent a1 is able to easily detect the NCS, by comparing the two contradic-
tory requests and observing that their origins are the same.

However, our agent still does not know how to solve the NCS as the requests, originating
from the same criterion, have identical criticality. To understand what is needed for the
agents to be able to solve the problem, let us examine our example again.

In our example, the solution is quite obvious. We want to minimize a1 + a2, knowing that
a2 = − 1

2 a1. This problem is then equivalent to minimizing a1 − 1
2 a1 or, simplified, 1

2 a1. The
correct behavior is thus for a1 to decrease.
Let us now change a little this problem, considering instead a2 to be equal to −2a1. In this
case the problem can be rewritten as (after simplifying) minimizing −a1, or maximizing a1.
In this case the correct behavior for a1 would be to increase.

It is now obvious that the correct behavior for the agent a1 is extremely dependent on

102 Tom Jorquera

6.3. Non-Cooperative Situations

II

the coefficient of the intermediate model. The same can be said about the coefficients of
the objective, and could be said in the general case about any of the intermediate models
which could happen to be between the objective and the variable agents. Conceptually, we
could say that the variable agent is linked to the objective agent by different “branches”,
with each branch having a specific influence on the objective. In our original example the
two “branches” would have influences of respectively +1 and − 1

2 (and +1 and −2 in the
modified example). That is, the impact of a change of a1 of δa1 is of 1 considering the direct
branch, and of − 1

2 considering the branch passing by a2, for a total influence of 1
2 .

If we can provide this information to the variable a1, then the agent will be able to solve the
NCS by selecting the request coming from the most influent branch(es), ensuring it action
will be beneficial for the origin of the requests. We will now see how, by adding a new
information with the requests, the agents are able to propagate their local influence to the
variable agent, allowing it to solve the NCS.
This behavior is described in algorithm 6.16.

Algorithm 6.16: Influence propagation by internal model agents

behavior of Objective/Constraint Agent
ci ← correlations(Inputs, {output})
// constraint and objective agents have one output only
foreach i ∈ Inputs do

in f luenceri ← ci
end

behavior of Model Agent
ci,o ← correlations(Inputs, Outputs)
// model agents can have several outputs
foreach r ∈ selected requests do

foreach i ∈ Inputs do
o ← senderr
in f luenceri ← in f luencer × ci,o

end
end

Influence Propagation Mechanism Before presenting the exact propagation mechanism,
we need to make a quick clarification. In our example, we reasoned on linear models
by looking at their coefficients in order to know the different influences. Such reasoning
could not be applied to the general black boxes models that the agents use. However, we
presented in section 6.2.2 a general algorithm which allows the agents to create local linear
approximations of any black box models by observing the correlations between the inputs
and the outputs of the internal model. Consequently we can assume that each agent with
an internal model can always extract the linear factors corresponding to the model, either
because they were given to them by the designer, or because they used the aforementioned
method to create a local linear approximation (using the observed correlations). During the
rest of this section, we will assume that the agents apply the estimation algorithm and use
the observed correlations as approximate linear factors of the problem.

To provide the variable agent with the correct influence information, the agents use a
simple propagation mechanism. An influence field is added to the requests transmitted into

An Adaptive MAS for Self-Organizing Continuous Optimization 103

II

Agents Behavior

the system. The constraint and objective agents which send the original requests fill the
influence information with the observed correlation between its output and and the input
corresponding to the agent to which the request is sent.
An intermediate variable agent will propagate the request without modifying this field, while
a model agent will replace it by its old value multiplied by the correlation its observed between
the output from which it received the request and the input to which the request is sent (this
operation is done independently for each input if a request is propagate to several inputs of
the model).
When a variable agent detect a hidden dependency NCS, it separates the requests coming
from the origin in two groups: the requests asking the variable to increase, and the requests
asking the variable to decrease. For each group the agent calculates the sum of the influences
of each request in the group, then compare the absolute values of the total influences. The
agent will select the action corresponding to the biggest influence (in absolute value). If
the agent is a design variable, it will change accordingly, if it is an output variable it will
propagate a request with the same origin and information, but replacing the influence value
with the sum of the influences of the winning group.
We can say that, in the same way that we “collapsed” the intermediate models when we
wanted to find the solution to our example problem, the intermediate correlations are “col-
lapsed” into the influence information for the variable agent to be able to solve the NCS.

The detection and solving of a hidden dependency NCS by the variable agents is described
in algorithm 6.17.

Algorithm 6.17: Hidden dependency detection and solving by variable agents

Rreceived ← received requests
// select most critical request
Rselected ← arg max

r∈Rreceived

criticalityr

if |Rselected| ≥ 2∧ ∀(r1, r2 ∈ Rselected : originr1 = originr2) then
R− ← {r ∈ Rselected : valuer < valuecurrent}
R+ ← {r ∈ Rselected : valuer > valuecurrent}
if R− 6= ∅ ∧ R+ 6= ∅ then

// a conflicting hidden dependency NCS is detected

In f− = ∑
r∈R−

in f luencer

In f+ = ∑
r∈R+

in f luencer

if |In f−| > |In f+| then
Rselected ← R−

else
Rselected ← R+

end
handle Rselected

end
end

104 Tom Jorquera

6.3. Non-Cooperative Situations

II

a1

a2

a2 = - ½a1

min a1 + a2

Figure 6.11: Hidden dependency example (reproduced).

6.3.5 Asynchronous Messages

The last NCS addresses an underlying assumption we have made until now. When we
described the behavior of the agents, we supposed each of them always receive the messages
in a timely manner, waiting if necessary until all the relevant messages are transmitted before
acting. Once again, this hypothetical scenario is made impossible by the need for the agents
to maintain a local view. The agents do not know what messages are currently transiting in
the system. Their only knowledge concerns the messages they received at the start of their
cycle and what messages they previously sent (but not their current status). Consequently,
the topology of the agent graph can lead to transmission delays, where messages sent at
the same time by the same agent will not necessarily reach their ultimate destination at the
same time. For example, let us look back at the hidden dependency example (reproduced
on Figure 6.10 for convenience). When we discussed the case of hidden dependencies, we
assumed by all the messages sent by the objective agent would reach a1 before the latter
would take its decision. However, it is clear that one of the message will take more time to
reach a1 than the other, as it must transit by two intermediates. Why would the agent a1 wait
for this late message, without even knowing its existence, before acting?

Many of the previous mechanisms we proposed rely on a timely information delivery, for
example for the agents to be able to detect some NCSs. Based on this, it results that, without
an adequate “synchronization” mechanism, many of them would fail to work correctly.
On the other hand, having a fully synchronized system, where all the agents would make
lengthy checks to ensure the complete propagation of all messages to all recipients, would
be undesirable. Indeed, complex continuous optimization problems create big but loosely
connected graphs, for which such full synchronized mechanism would be both costly and
inefficient. Moreover, if we take in account the dynamic aspects of the problem (having a
designer which can add or remove agent at any moment during solving), obtaining such
synchronization guarantee can be nearly impossible.

Asynchronous Messages with Influences and allgood Messages We propose a somewhat
middle ground mechanism, where the agents try to estimate if they received enough messages
to make a correct decision. As some of the information they require is learned during the

An Adaptive MAS for Self-Organizing Continuous Optimization 105

II

Agents Behavior

solving process, an adaptation period will be necessary in order for the agent to behave
correctly. During this adaptation period the agents may have a suboptimal behavior where
some NCSs are not correctly detected. The iterative nature of the solving process allows these
suboptimal decisions to be ultimately corrected by the agents themselves.

The solving mechanism for this algorithm is composed of two parts, regarding how the
agents make their estimations for respectively the request messages or the inform messages
they expect to receive.

1. Concerning the requests they expect to receive, the agents base their reasoning on
the fact that requests are only sent in answer to previously received inform messages.
Consequently they except an answer for the inform messages they previously send. So
the agent assume at least one request message by output agent to which it sends an
inform message. As the agents are cooperative, each output agent should forward at
most one request (the one deemed the most important to handle) back to the agent.
Consequently, an agent can expect to receive one and only one request message in
response to the informs it send. Once it received a request message from each of its
output agents, it can take its decision (either forwarding the most important request
to its input(s) or, in the case of a design variable, changing its value and sending new
inform messages).
The only modification which needs to be done for this mechanism to work concerns
(non-criterion) agents which are not linked to any output agents. Previously, when
receiving inform messages, these agents would change their value accordingly, but
would not send back any message (as they have no request to do). In order for the
“upstream” agents not to be blocked waiting for an answer, an agent that neither has
requests to send or informs to forward must answer to its input agent with an allgood
message, signaling that it has taken into account the inform message and that non other
action is pending. An agent receiving such allgood message knows that it no longer
needs to wait for this output for taking its decision.
This behavior is described in algorithm 6.18.

2. In the same way that an agent waits for requests messages after having sent informs,
an agent which has send request messages should wait to receive enough relevant
inform messages before taking further steps. In the same way that an agent sending
informs expects to receive request messages in return, an agent sending requests expects
to receive inform messages in response. A basic solution is thus to apply the same
algorithm. In this case however, the agent is not strictly required to wait for all the
inform messages to take a relevant decision. We presented in section 6.2.2 how the
internal model agents can get an indication of the impact of their inputs in regard of
their outputs using correlation information. Consequently, such agents can wait until
they estimate that they received informs from their inputs corresponding to a total
of more than 50% of the total “impact” on the value of each output (variables agents,
having only one input, always have to wait for this input and this input only, which
correspond of 100% of the total “impact” on its value).
This behavior is described in algorithm 6.19.

In our implementation, we did not concern ourself with potential loss of messages, which
can happen when the designer intervenes on the system by removing existing agents while

106 Tom Jorquera

6.3. Non-Cooperative Situations

II

Algorithm 6.18: Waiting algorithm for request messages

O← { outputs }
Requests← { received requests }
AllGoods← { received allgoods }
stillwaiting← |Requests|+ |AllGoods| 6= |O|

Algorithm 6.19: Waiting algorithm for inform messages

O← { outputs }
In f orms← { received informs }
stillwaiting← ∀output ∈ O, ∑

in f o∈In f orms
in f luence(inputin f o, output) ≤ 50%

messages are transiting. For a “production-ready” version of the algorithm, such potential
losses should be taken into account. Otherwise some agents may hang indefinitely waiting
for lost messages. A simple way to remediate to this problem is to add timeouts to the agents.
Timeouts are a well-studied problem in computer networks, and adequate algorithms can be
proposed based on the works in the existing literature (see [Jac88] for example).

6.3.6 Summary of Non-Cooperative Situations

In this section we presented several problematic configurations (NCSs) which can arise
from the specificities of our modeling of a continuous optimization problem. For each diffi-
culty we presented a basic example of problematic configuration and how this configuration
would cause a cooperation failure with the nominal behavior of our agents. The different
NCSs are summarized in Table 6.3

In each case, we proposed general mechanisms for the agents to be able to detect and
correct the NCSs in order to maintain a correct and efficient optimization process. In general,
we had to provide enough information for the involved agents to detect and correct the NCS.
The different mechanisms are summarized in Table 6.4

Table 6.3: Non Cooperative Situations Summary

NCS Description Cooperative
Mechanisms

Conflicting Requests An agent receives several incompatible
requests

Criticality

Cooperative Trajectories An agent receives seemingly incompat-
ible requests, which can each be satis-
fied

Participation

Cycle Solving Several agents are involved in a diverg-
ing cycle

Signature

Hidden Dependencies An agent sends seemingly independent
requests to dependent agents

Signature, Influ-
ence

Asynchronous Messages Agents receive messages in untimely
manner

Influence

An Adaptive MAS for Self-Organizing Continuous Optimization 107

II

Agents Behavior

Table 6.4: Non Cooperative Situations Solving Mechanisms

Mechanism Description Properties

Criticality A aggregated measure to indicate
the state of the agent

Comparable between different
agents

Signature A unique signature composed of the
unique id of the sender/origin of
the message and a (local) timestamp

Comparable, allows a partial
ordering of the messages by
sender/origin

Influence An indicator of the impact value of
the receiver on the origin

Comparable by origin

Participation An indicator of the relative impact
of the receiver on the origin relative
to the rest of the system

Comparable between different
senders

Complexity Analysis of Solving Mechanisms

We now provide a quick complexity analysis of the different solving mechanisms.

Conflicting Requests The main work for solving this NCS consists in finding the request(s)
with the highest criticality. This very simple operation can be done by examining each
received request in sequence and have a complexity of O(n) in the number of requests.
The solving of this NCS does not require sending additional messages

Cooperative Trajectories When solving this NCS, the agent must group the requests before
comparing the total participation of the two groups. The grouping and total participations
calculation can be factorized into a single pass algorithm of complexity O(n) regarding the
number of requests. The agent will not need to send additional messages for solving this
NCS.

For models agents, the algorithm will need to be applied on each input, consequently its
complexity will be O(n× i), i being the number of inputs.

Cycle Solving To detect a cycle, the agent needs to compare the signature of each received
message with the memorized origin signatures. The complexity of this comparison is O(n×
m), n being the number of received messages and m being the number of signatures.

Hidden Dependencies When solving this NCS, the agent needs to detect which selected
requests come from the same origin, group them, before comparing the total influences of the
two groups. The detection, grouping and total influence calculation can all be factorized into
a single pass algorithm of complexity O(n) regarding the number of requests.
The agent will not need to send additional messages for solving this NCS.

Asynchronous Messages The algorithm for waiting request is trivial and can be executed
in constant time. The algorithm for waiting informs requires a study of every inform for each
output, its complexity is thus O(n× o), n being the number of informs and o the number of
outputs.

108 Tom Jorquera

6.3. Non-Cooperative Situations

II

This mechanism requires the sending of additional messages from (non-criterion) output
agents which themselves do not have any output agent. In the best case, there is no such
agent, thus no additional message is sent. In the worst case all outputs agent are concerned,
and need each to send one additional message (message complexity of O(o), o being the
number of outputs).

It can be seen that, overall, the cooperative mechanisms we proposed to solve the various
NCSs are quite reasonably efficient in their complexity. This property is important in order
for the system to be able to scale to bigger and more complex optimization problem. We
managed to keep the complexity of the algorithms low by keeping the reasoning of the agents
to a local level, limiting their perceptions to their neighborhood and only very synthetic
information about the rest of the system (criticality, origin etc.). Moreover, it should be noted
that, in many problems, some of the agents will only have a minimal role in the solving,
being connected only to one agent in input and one agent in output. For these agents, the
complexity of these mechanism will be minimal as they will always receive at most one
message. Only in the utmost complex and coupled problems will the majority of the agent be
involved in the solving of NCSs.

A concern could be raised about the composition of these different mechanisms. Indeed
an agent can be involved in several NCSs at once. In this case, would not the combination
of these mechanisms cause exponential increase of complexity? While this concern could
be correct in theory, in practice the different solving mechanisms play the role of successive
filters regarding the received messages. Consequently, later mechanisms work on a far lower
number of messages than the earlier ones. The typical example is the conflicting requests
mechanisms, which will eliminate all the requests which are not deemed critical enough.
The others mechanisms will only have to take in account the requests which were conserved
by this first filter. More so, it should be noted that, while the different mechanisms have be
presented separately, a large part of the processing they do on the messages can be factorized,
in order to increase the overall efficiency. While in our implementation we did not do such
optimization (in order to keep the mechanisms separated and code easier to work with), such
improvements would be of course strongly recommended for a more “production-ready”
implementation of the system.
To conclude on this remark, we can safely say that the composition of the different cooperative
mechanisms is not of additive complexity, but only bring a marginal increase in the total
complexity of the agent behavior.

An Adaptive MAS for Self-Organizing Continuous Optimization 109

7 Extending the Multi-Agent

System for Uncertainties

We have seen in section 3.3 how uncertainties can be a major concern in real-life optimiza-
tion. We have also seen how several types of uncertainties existed and needed to be taken
into account. Moreover, complex optimization problems can involve several teams concerned
with different disciplines, each of which with its own practices regarding how to manipulate
uncertainties, making difficult to study the impact of uncertainties across disciplines.

In this chapter we present a way to alleviate this burden by having the agents automating
the uncertainty propagation in the system.

The difficulty is twofold:

3 How do the agents handle uncertainties ? How does a model agent calculate the
uncertainties on its outputs from the uncertainties of its inputs and its internal model ?
How does a constraint agent can handle a probabilistic constraint ?

3 How do the agents combine heterogeneous uncertainties modeling ? How can a
model agent handle inputs with different uncertainties modelings ?

To answer these difficulties we will present a general mechanism inspired by the one we
used with external optimizers, which is based on the use of encapsulated external tools to
apply the domain-specific expertise.

7.1 From Deterministic Optimization to Optimization under Un-
certainties

We previously explained that uncertainties can be present at several levels in the opti-
mization problem. We consider here the two following types of uncertainties:

3 Variable uncertainties, which are brought by the fact that we cannot perfectly control
the value which will be effectively assigned by the design variable.

3 Model uncertainties, which represent the limited precision of the models.

Taking in account these uncertainties leads to a modification of the criteria formulation.
Indeed, the constraint x < 10 makes sense in the context of deterministic optimization, but
not so much when the value of x is uncertain. Is the constraint satisfied when x is an uncertain
value, for example represented by an interval ranging from 8 to 12?
One can instead propose the following probabilistic constraint P(x < 10) > 90%, which can

An Adaptive MAS for Self-Organizing Continuous Optimization 111

II

Extending the Multi-Agent System for Uncertainties

still be evaluated when manipulating uncertain values. It is possible to propose others criteria
formulations manipulating uncertain values, for example one could consider a deterministic
constraint concerning the mean of an uncertain variable. Usually, constraints are expressed
in a probabilistic form, while objectives use the mean of the variables.

7.2 Manipulating Uncertain Values

Taking in account uncertainties requires modifications at several levels. The most obvious
concerns the data structure. On the deterministic version, the data exchanged by the agent
were simply real values 1. To be able to exchange uncertain values, the agents require a more
complex data structure.

As we presented earlier, there are many ways to represent uncertainties, each of them
having specific requirements. For example, an interval representation requires two values,
the minimum and maximum boundaries, while an uncertainty expressed by a set of measures
obtained with Monte Carlos experiments can require the storage of hundreds of thousands
points. As we want to maintain the possibility for the designers to choose how they represent
uncertainties, we need to provide an abstraction for the agents to be able to consistently
handle uncertain values whatever the specific representation.

To this end, we specified the minimum set of operations the agents require. To be able to
manipulate an uncertain value, an agent needs to be able to :

3 obtain the mean of the value (or at least a representative value).
3 obtain the standard deviation of the uncertainty.
3 draw a random value following the law represented by the uncertainty.
3 obtain the cumulative probability of a value (i.e. for a given value t, what is P(X < t))
3 obtain the inverse cumulative probability (for a given probability p, what is t for which

P(X < t) = p) associated with the uncertainty).

Any uncertainty representation which can provide these five informations can be used by
the system. All the designer needs to do is to provide the module which implements these
operations2.

Let us see how one can provides these information regarding two drastically different
modelings: intervals and Monte Carlo experiments.

Intervals Representation As the reader knows, an interval representation consist of a lower
and upper boundaries. It can be considered as an uniform law, with all the values between the
boundaries considered as equally likely. Suppose l and u the boundaries of our uncertainty,
we can obtain the required informations using well-known formulas for the uniform law.

3 the mean can easily be obtained as
u + l

2
.

3 the standard deviation is
√
(u− l)2/12.

3 the drawing of a random value consists of drawing a value between l and u using an
uniform law, which presents no difficulty.

1With the obvious limitation of the representation of real numbers on a machine.
2The reader familiar the concepts of object-oriented programming and interface implementation will have no

difficulty to guess how the process is done in our prototype

112 Tom Jorquera

7.2. Manipulating Uncertain Values

II

3 the cumulative probability of t is calculated as P(X < t) =

0 if t < l
t− l
u− l

if l < t < u

1 if t > u
3 the inverse cumulative probability of p is obtained as t = l + p(u− l).

As we can see, for a simple representation as intervals the required informations can be
obtained very easily.

Monte Carlo Experiments The Monte Carlo Experiment is not an uncertainty law per se
but a series of random drawings to obtain experiment points. If the number of drawings
is big enough, then the series can provide an adequate information about the uncertainties
governing the variable. Suppose {xn} a series of n drawings over x. We suppose the values
to be ordered (that is, xi < xj).

3 the mean can be obtained with
1
n ∑

n
xn.

3 the standard deviation is obtained by first calculating the variance using the formula
Var(X) = E(X2) − E(X)2 (possible as we can calculate the mean), then taking the
square root to obtain the standard deviation.

3 the drawing of a random value consists of drawing a value i between 1 and n and
returning the corresponding point xi

3 the cumulative probability of t is calculated as P(X < t) =
|{xi, ∀xi < t}|
|{xn}|

(where |{x}|
is the cardinality of the set {x}), i.e. the number of elements lower than t divided by
the total number of elements.

3 the inverse cumulative probability of p is obtained as t = xi, where i = p× n.

Even with very specific, non-analytical representation of uncertainties such as datasets
from Monte Carlo experiments, we can provide the needed informations without much
hassle.

Now that we have defined a common set of operations common to all the uncertainties
representations, we can adapt the agents behavior in order to handle them. Such “uncer-
tainty container” can be associated to variables to represent uncertain values, or to models,
indicating uncertainties concerning the underlying model.

For example the designer can estimate that, due to physical limitations, the value of a
design variable x cannot be exactly be controlled and will always suffer from an imprecision
of +/-0.1 around its assigned value. He can model the uncertainty around the variable with
an interval. If he decides to arbitrarily initialize the variable at the value 8, the uncertain
value of x will then be [7.9; 8.1].

If the designer observe that the real-world process represented by a specific model
tends to produce outputs whose values imprecision can be accurately modeled by a normal
distribution, he can associate the normal distribution uncertainty to the model. For example
the model y = 2x, upon the reception of the information x = 1, will produce an uncertain
value y with a mean of 2 and a variance corresponding to the associated normal law.

We have now seen how the agents can manipulate uncertainties in isolation. But these
mechanisms do not allow the agents to propagate uncertainties in the system. Indeed, if

An Adaptive MAS for Self-Organizing Continuous Optimization 113

II

Extending the Multi-Agent System for Uncertainties

Uncertainties
propagator

{(i1,ui1
), ..., (in,uin

)}

{(o1,uo1
), ..., (ok,uok

)}

(m, um)

Figure 7.1: Uncertainties propagator as a black box function.

we take our two previous examples, what if the variable x ,associated with an interval
uncertainty, is assigned in input of the model y = 2x, following a normal distribution? The
model has no mechanism to handle uncertainties received on its inputs, but these uncertainties
must be taken into account as they surely have consequences on the uncertainties of its
outputs.
The difficulty here is twofold. Not only the model agent must be able to take in account
the uncertainties provided by its inputs in addition to its own uncertainty, but it must be
able to do so even with uncertainties of different kinds (in our example, interval and normal
distribution). We will now present a generic mechanism using uncertainties propagators which
allows to solve both problems at once.

7.3 Uncertainties Propagators

In the same way we encapsulated expert knowledge on numerical optimization using
external optimizers, we propose to encapsulate the knowledge related to the propagation
of uncertainties into dedicated modules we call uncertainties propagators. While external
optimizers are used by the agents to solve local optimization problems, the uncertainties
propagators are used by the agents to propagate the uncertainties associated with their inputs
and model into uncertainties on their outputs.

The role of an uncertainties propagator is to determine the uncertainties associated with
the outputs values of the model based on:

3 the model itself
3 the uncertainty associated with the model
3 the input values
3 the uncertainties associated with the inputs

As the outputs values cannot be determined by simply evaluating the (deterministic)
model, the agent in charge of it will delegate the whole evaluation process to the uncertainties
propagator when working with uncertainties. From the agent point of view, an uncertainties
propagator is a black box function taking uncertain input values and an uncertain model,
and producing uncertain outputs values.

Figure 7.1 illustrates the representation of an uncertainties propagator from the point

114 Tom Jorquera

7.4. Conclusion on Uncertainties Handling

II

of view of an agent. The uncertainty propagator is a black box. The (ij, uij) represent the
n uncertain input values of the model (the ij corresponding to the mean value of the input
and uij to the associated uncertainty). The model itself m is also provided along with its
associated uncertainty um. Based on the inputs and the model (and their uncertainties), the
uncertainty propagator returns the (oj, uoj) represent the k uncertain output values produced.

This approach shows several advantages. First it allow to keep the functioning of the
agents nearly untouched, which in itself is a good sign. Handling uncertain values can be
deemed to be an orthogonal concern to the previous ones, and orthogonal concerns should
lead to orthogonal changes. Thus this modification of our system to handle uncertainties
show that our modeling is flexible and can be extended easily.
This approach also permit to reduce the work of the designers, which only need to define
the needed propagators once and reuse them on several problems. This aspect is particularly
important as defining a correct way to propagate uncertainties across different disciplines
can be an extensive work involving experts from different domains. Providing a way to
encapsulate the result of this work in a reusable component leads to a more efficient work
process (this concern is especially recognized by software engineers, which created the well-
known acronym: DRY - “Don’t Repeat Yourself”).
Finally, by strictly encapsulating the required knowledge, we provide a highly modular
and adaptable mechanism. If the needs regarding the modeling of the uncertainties changes, the
consequences on the problem are limited solely to the uncertainties representation and/or propagators.
For example, if a designer needs to change the uncertainties associated with a model, he
only has to change the uncertainty representation of the model and to use the appropriate
propagator (or create it if no adequate propagator already exists).

7.4 Conclusion on Uncertainties Handling

We have seen how the agents can automatically propagate uncertainties in the system,
relieving the designers of a part of the burden.
This extension to our modeling allow to take in account not only values but uncertain values,
that is, values with an associated uncertainty representation. As the exact representation does
not concern the agent, these uncertainties are mostly handled as black boxes. In a similar
way to how they use optimizers to propagate requests with black box models, internal model
agents can use uncertainties propagators to locally propagate uncertainties. In this regard,
uncertainties propagators (as well as external optimizers) can be seen as a way to extend the
capabilities of the agents provided by the users.

While this mechanism require for the users to provide the uncertainties propagators, it
has the advantage that this specific effort has to be done only once, as the resulting propagator
can be reusable at will. In this way it can greatly reduce the time different teams need to
spend together to overcome the difficulties induced by different working practices. It also
open the possibility of propagators libraries, which can be shared and imported as needed.

A note of warning however, the representation of uncertainties is inherently imprecise.
In the same way that the modeling of a system contains imprecision, so does the modeling
of the uncertainties used to represent this very same imprecision (and so would do the
uncertainties used to represent the imprecision on the uncertainties...). Like discussed before,

An Adaptive MAS for Self-Organizing Continuous Optimization 115

II

Extending the Multi-Agent System for Uncertainties

this imprecision is an inherent limitation of the real world. As the uncertainties modeling
is in itself factor of uncertainties, it follows that the transformation between two different
uncertainties representations will in itself contains some part of imprecision (if only because
the passage from one representation to another can lead to information loss, e.g. passing from
a normal law to an interval modeling).
This problematic is not specific to our technique and is indeed present all the same if the
uncertainties propagation is done “manually”. But it is worth reminding, as this complete
automation of the propagation could hide it from the mind of the designer.

As a remark we have seen how, by overloading some common mathematical operators, it
was possible for the agents to manipulate uncertain values as if they were simple numerical
values. Such work could be possibly done with complex numbers, matrix or others, arbitrarily
complex, data structures, as long as the corresponding overloaded operators are provided.

116 Tom Jorquera

Synthesis of the Contribution

In this part we presented a novel approach for complex continuous optimization using a
multi-agent system do distribute the optimization process. We started our work with a new
way to model a continuous optimization problem as an agent graph. This modeling allows
for an easy and potentially automatic transformation of any problem as a graph, without
requiring special knowledge or expertise regarding MAS. Moreover, this transformation does
not requires any specific reformulation of the problem, which can keep the natural formu-
lation corresponding to its domain. Because of these properties we named our modeling
Natural Domain Modeling for Optimization (NDMO).
To the best of our knowledge, this is the first proposal for providing a common modeling of
continuous problems as agents graphs. While we cannot guarantee that is specific modeling
will be adopted, it is surely a first step toward opening the field to other contributions. One
could wonder if, by dividing the problem into different entities, NDMO would not fall into
the same pitfall than MDO methods, applying to the problem a reductionist approach. How-
ever, a fundamental distinction is that MDO methods modify the initial problem in order to reduce
its complexity, while our modeling does not make such modification. On the contrary this
modeling fully conserve the interdependencies between the different elements, maintaining
an integral and integrative formulation of the problem.

Based on this modeling, we proposed a simple nominal behavior where the agents try to
solve individual goals and only has a limited, local perception of their neighbors. These agents
can interface with external optimization techniques to solve local optimization problems (or
alternatively use some internal optimization mechanisms), and exchange request and inform
messages in order to keep a global coherence of the solution. A major distinction with MDO
methods is that the global coherence of the problem is not a separate phase but is fully taken
in account during the entire process.
While our agents are already able to interface with external optimization methods, some
refinements could be proposed. An example could be to, instead of providing each agent
with an adequate optimizer, providing all the agents with an optimizer catalog where several
optimization methods are presented and characterized. Based on their observation of the
manipulated models, the agents could select the optimization method they deem the most
appropriate, and even switch between different methods during the solving. Such mechanism
would contribute even more to relieving the burden of the designer, but would require to be
effective an extensive study of the ontological properties of the field. An other improvement
could concerns the internal optimization mechanisms we presented in algorithm 6.7. It could
be possible to replace our simple linear approximation estimation by more astute techniques.
Such methods could provide more precise estimations to be used by the agents.

An Adaptive MAS for Self-Organizing Continuous Optimization 117

III

Synthesis of the Contribution

This nominal behavior being insufficient to solve some of the issues brought by the
specificities of continuous optimization, we use the AMAS theory to identify a set of non
cooperative situations, which represent specific patterns of configurations where the nominal
behavior of the agents result in a sub-optimal handling of the optimization process. For each
of these NCSs, we proposed cooperative mechanisms which enrich the nominal behavior of
the agent. These additional mechanisms allow to, when necessary, detect and identify the
NCSs, and to do corrective actions in order to re-establish the correct optimization process.
The AMAS theory has proved to be an effective guide to the conception of our system. By
maintaining a local view and concentrating on specific problematic situations, we obtained a
behavior which is both scalable and modular. An interesting aspect of this work concerns
the different NCSs we identified. As our application domain is in itself quite abstracted and
general, the NCSs we encountered seem themselves to be of a more general nature than in
some other works. In chapter 9 we will explore possible uses of this work to other domains
than continuous optimization.

We then showed how both our modeling and solving mechanisms are modular enough to
be extended in order to handle additional concerns by proposing some modifications which
allow to take in account the handling of uncertainties during the optimization process. We
detailed the requirements for the agents to be able to handle uncertain values instead of
normal numerical values, and we introduced the new concept of uncertainty propagator
to provide, using the designers expertise of the uncertainties, an automatic mechanism for
propagating heterogeneous uncertainties in the system.
Uncertainties handling is an important concern in design optimization. As design optimiza-
tion problems are among the most complex continuous optimization problems, it seemed
important to us to provide such functionalities for the system. A quite interesting work
would be to propose new ways to extend the system, for example replacing numerical values
by vectors, or by extending model agents to manipulate multiple models of different fidelity,
experimenting with the possibilities (and the limits) of our proposed modeling.

118 Tom Jorquera

An Adaptive Multi-Agent System for
Self-Organizing Continuous Optimization

Design, Implementation and Extending

the AMAS4Opt Building Blocks

An Adaptive MAS for Self-Organizing Continuous Optimization 119

III

The work presented in this thesis is part of the ongoing ID4CS project. ID4CS (Integrated
Design for Complex Systems) is funded by the French Agence Nationale de la Recherche (National
Research Agency)3 and involves nine partners, both from the academic and industrial world.
The goal of the ID4CS project is to use the MAS approach to provide new tools for the
design of complex systems. Our industrial partners, Airbus and Snecma, are involved in
aeronautical design, and are thus fully concerned by the problematic of complex continuous
optimization for system design.

For this reason, one of our goals was not only to propose a new approach for continuous
optimization, but also to put this approach in practice by integrating it into a working
prototype which could be used by our partners. To this end we worked with our partners,
including optimization specialists and software development experts, to propose such a tool,
basing ourselves upon the ADELFE method. This method aims to guide the development of
AMAS-based softwares from high level user requirements to the implementation nuts and
bolts. Using ADELFE we made a comprehensive analysis of the domain and actors involved
in the use of such a tool.

We also use the design tools provided with ADELFE to instantiate our MAS and integrate
it into the prototype, among which the recent MAY framework. The goal of MAY is to
provide suitable abstractions as well as reusable software components for the development of
agents and multi-agents systems. We contributed to the enrichment of its components library
by developing a general and modular agent architecture consistent with the AMAS theory,
notably by proposing a modular skill stack principle, where different skills can be composed to
address specific requirements.

While such work could seem to concern software engineering experts more than artificial
intelligence specialists, we will see how existing MAS oriented methods such as ADELFE
are still too high-level to be successfully directly applied to any domain (and more so to
continuous optimization) without an important agent expertise and extensive research work.
We will detail how the scientific work we produced and presented in the previous part,
especially the identification of various NCSs and the mechanisms to solve them, can be
generalized into “building blocks”. These building blocks could then be reused to guide the
design of other MAS in the domain of problem solving. This work places itself into a more
general effort to provide a general reusable toolbox for assisting non experts in applying
AMAS to the domain of optimization, under the name AMAS4Opt (AMAS for Optimization).

3COSINUS program, ANR-09- COSI-005 reference

An Adaptive MAS for Self-Organizing Continuous Optimization 121

8 ADELFE and MAY Architecture

8.1 Overview of ADELFE

In section 4.2.4, we succinctly presented ADELFE1, the method which has been proposed
for the design of AMAS. In this chapter we get back in more details about this method and
what benefits it provided for the design of our system.

ADELFE is a method devoted to software engineering of adaptive multi-agent systems. It
was initiated by a French government funded project lead by IRIT (see http://irit.fr/
ADELFE-Project for details) and has been continuously enhanced since. Like previously
said, the name “ADELFE” is the French acronym for “toolkit to develop software with
emergent functionality” (Atelier pour le DEveloppement de Logiciels à Fonctionnalité Emergente).

The ADELFE method in itself is based on the Rational Unifed Process (RUP) and is defined
following the Software Process Engineering Meta-Model (SPEM) [PG04; Ber+05]. Since its
revision [Rou08], it is composed of five Work Definitions (WD), themselves decomposed in
several activities making use of UML as well as the AMAS-ML and muADL languages. An
overview of the method is shown on Figure 8.1.

In regard of the RUP, ADELFE adds supplementary activities and roles which are specific
to its approach for the design of AMAS compliant software.
The final requirement study (WD2), was complemented with activities 6 and 7-2 concerning
the characterization of the system environment and the identification of cooperation failures
during the determining of the use cases. During the analysis (WD3), additional activities
11 and 12 respectively check for the adequacy of AMAS to the problem and identify the
agents involved in the system being built, while activity 13 is complemented with a step
concerning the study of the relationships between agents. During the design (WD4), activities
15 et 16 concerns the design of the system and the agents, while activity 17 concerning fast
prototyping was added in order to be able to quickly test the proposed behavior of the agents.
The development phase (WD5) concerns the architecture and the implementation of the
agents and the system.

1http:/www.irit.fr/ADELFE/

An Adaptive MAS for Self-Organizing Continuous Optimization 123

http://irit.fr/ADELFE-Project
http://irit.fr/ADELFE-Project
http:/www.irit.fr/ADELFE/

III

ADELFE and MAY Architecture

Figure 8.1: Overview of the ADELFE Method.

8.2 Applying ADELFE for the Design of a Continuous Optimiza-
tion Tool

Based on the guidelines of the ADELFE methodology we defined the requirements of the
tool we proposed to develop. The following functionalities were identified:

3 Our tool will allow users to solve multidisciplinary optimization problems.
3 The user will be able to load disciplinary models into the tool, express constraints and

objectives on these models and then use and interact with the tool to solve the defined
problem.

3 Our tool will be reusable from one optimization problem to another in different appli-
cation domains and will be a generic optimization tool.

3 The user will be able to express uncertainties on the models or variables.
3 The solving will take into account these uncertainties.
3 The tool will be able to integrate well-known optimization techniques to be used locally

on the models constituting the global problem. It will allow the user to add new
techniques to use during solving. The tool will also be able to interact with others
optimization tools to ease the optimization process.

3 The user will be able (at runtime):
– to monitor the system activity,
– to observe time history qualitative indicators,
– to adjust its parameters.

124 Tom Jorquera

8.2. Applying ADELFE for the Design of a Continuous Optimization Tool

III

Figure 8.2: Actors and use cases identified during requirements studies for ID4CS.

Several entities interacting with the tool were also identified. The Method expert adds
new optimization methods into the system. The expert field can be optimization methods
(classic methods, AMAS methods ...) or uncertainties. The Model expert adds new models
into the system. The role of the Engineer is to use the different elements defined by the other
experts to define new problems for the system to solve and to monitor the functioning of the
system. At last, the AMAS expert has to define and tune the agents of the system. The system
should also be able to integrate with external optimization and modeling tool, in order to
accommodate the existing workflow and constraints of the users.

The different use cases which were identified for each of these entities are presented in
Figure 8.2.

The domain analysis (activity 10) roughly corresponds to the work we provided in 5.1,
as this activity relates to the study of the application domain in interaction with the domain
experts. The domain modeling roughly corresponds to an extended version of NDMO, with
some additions and adjustments regarding the expected functionalities of the prototype.
These adjustments mainly concern the introduction of the workspace and project concepts,
which allow the designer to organized its work, as well as the introduction of the external
optimizer and uncertainties propagators as domain entities, in order to provide a more
seamless integration of these tools into the prototype.
ADELFE then advocates an AMAS adequacy verification (activity 11), in which one checks
using a set of questions if AMAS are a relevant solution for the problem to solve. We discussed
at length in chapter 4 the advantages of the AMAS approach. Without much surprise the
results of this activity were strongly in favor of using an AMAS solution, as the problem we

An Adaptive MAS for Self-Organizing Continuous Optimization 125

III

ADELFE and MAY Architecture

aim to solve is highly distributed, is not easily solvable by known algorithms, is potentially
non-linear and evolving.

The next activities concerned the design of the agents themselves, their interactions, the
identification and solving of the Non Cooperative Situations. The work concerning these
activities is without much doubt the most difficult, involving in the ADELFE method the
participation of an “agent designer”. Indeed, this part of the ADELFE method stays at a high
abstraction level, and we can say without much controversy that the process of designing the
agents is still highly exploratory, probably currently more related to a scientific study than to
an engineering development. In this regard, our contribution presented in part II provides
the expected answers to these activities.

The last WD of ADELFE corresponds to the design of the agent architecture and im-
plementation using MAY, the component-based framework developed in complement of
ADELFE. While such framework aims ultimately to make the process as seamless and au-
tomated as possible by providing reusable components, its early state implied once more
some exploratory work on our part in order to produce, and in the end contribute to the
MAY library with our own produced components. We will now see in the next chapter the
architecture we proposed for a modular AMAS agent design.

8.3 MAY Agent Architecture

To implement the MAS, we used the Make Agents Yourself (MAY) framework [Noe12].
MAY is a component-based framework that automatically generates an implementation of
an agent architecture from a given description.

The ADELFE methodology proposes an abstract agent architecture (represented in Figure
8.3), which we translated into the MAY architecture description language, SpeADL. In the
context of our study, as the agents communicate and interact only by messages passing
we could make some simplifications in regard of the original modeling of communications
and actions capability of the agents. All our agents use the same AMAS architecture. They
are differentiated by specific implementations of the components. For example, Model and
Variable agents will have different implementations of the Behavior component.
The components of a MAY architecture are connected by ports. A port can be though as a
service interface, listing a set of available operations. Components expose lists of available
and required ports. A component required ports must be linked to available ports provided
by other components, satisfying these interfaces.

An illustration of this composition mechanism is shown on Figure 8.4. Two components
A and B are present. The component A exposes a port P as available, which is required
and used by the component B. Consequently, this last component is now able to call the
operations declared by A through this port, operations which are supposedly necessary
for the good functioning of B. The way ports are used to connect otherwise independent
components is in this way not too dissimilar to the role interfaces play in the context of the
dependency injection design pattern.

For the sake of clarity, the agent architecture is separated in three views: the behavior,
communication and monitoring views.

126 Tom Jorquera

8.3. MAY Agent Architecture

IIIFigure 8.3: AMAS agent architecture (as defined in ADELFE).

A P B

Figure 8.4: Example of MAY composition.

8.3.1 Behavior

The behavior view (Figure 8.5) contains the components related to the behavior of the
agent.

The Behavior component contains the rules which dictate the behavior of the agent. This
component can be seen as orchestrating the architecture. This component exposes to the
outside of the environment the Step port, which is used to make the agent execute a step.
During a step the Behavior component executes the agent rules. These rules will in return
make use of the other components of the agent.

This behavior component contains the behavioral algorithms presented in chapter 6.
This component mostly contains the parts regarding the general steps of the agent behavior
and making use of the more specialized methods implemented in the Skills and Aptitudes
components (for example, the exact computations involved in the detection of NCS).

The State Vault contains the state of the agent. It is used by the components that need to
save and read some state variables. Centralizing all the states variables into one component
provides several benefits. First it is easier to save and restore the state of the agent, as we just
need to save the content of the vault. It is also simple to share some data between components,
as long as these components have access to the vault. And it is easy to provide a view of the
agent state by just reading the State Vault.
This approach has however several drawbacks. It makes the code more verbose, as we need
to explicitly read the value from the vault (and possibly store it to the vault if modified). It
makes more difficult to track side-effects, as it is not obvious to know which component uses
which value. At last there is sadly no way to strictly enforce that components only use the
State Vault for storing state values, as neither Java nor MAY can provide such guarantee.

An Adaptive MAS for Self-Organizing Continuous Optimization 127

III

ADELFE and MAY Architecture

StateVault

IStateVaultReader IStateVaultWriter IStateVaultCache

Aptitudes[AptitudesType]

AptitudesType

Skills[SkillsType]

SkillsType

Behavior

IStep

Agent (behavioral vue)

Figure 8.5: Agent Architecture — Behavior view.

The Skills component contains the skills of the agents. Each agent type has its own skills
set, and skills can require to read and modify the agent state (thus the link between this
component and the State Vault). Some skills are used directly from the Behavior rules but
some skills can also be used by others skills.
Some examples of skills are: for a Variable agent, the capability to change its value based on
the requests it received and its old value. For a model agent, the capability to evaluate an
internal model and get its output values.
Skills have the somewhat unique properties that they are in themselves stackable, depending
on each others. To address this concern we propose to define the Skills component itself as a
complete components architecture in itself. We discuss this point in more details in section
8.3.1.1.

The Aptitudes component contains the aptitudes accessible to the agents. Unlike skills,
aptitudes are general capabilities which do not rely on the state of the agent. Consequently,
all agent types have access to the same aptitudes, and there is only one implementation of
the Aptitudes component.
Some aptitudes are used directly from the Behavior rules but some aptitudes can also be used
by skills or others aptitudes. Some examples of aptitudes are: ordering a set of requests
from the most to the least important. Make some manipulations on the potentially complex
exchanged values (adding, calculate the norm etc., used for example in the manipulation of
uncertain values).

The distinction between skills and aptitudes is not an easy one. The ADELFE method
makes the distinction between the two concepts by defining skills to be capabilities of the

128 Tom Jorquera

8.3. MAY Agent Architecture

III

agents inherent to its function, which cannot be abstracted from the application domain (for
example the way a variable agent changes it value in response to the requests it receives),
while aptitudes are more general “reasoning” capabilities, which could be reused between
distinct systems (for example, using an Adaptive Value Tracker to track a value). The distinc-
tion between the two can be somewhat fuzzy, even more as often the firsts can depend on the
seconds (for example, in the skill concerning the change of its value, the variable agent will
use an AVT).
In our implementation, we choose to address this concern by classifying as skills the ca-
pabilities of the agents which are related (by using or modifying) the internal state of the
agent, while classifying as aptitudes the capabilities which require no such things. Hence the
distinction in our component modeling where the Skills component requires an access to the
internal state of the agent, while this requirement is absent from the Aptitudes agent.

8.3.1.1 Skills Component Architecture

As stated, one of the more complex components of the agents is the one which encapsulate
its skills. Indeed, each agent type has its own specific skills, and the skills in themselves
can intervene at different levels or even be used by other skills. This specificity justifies the
implementation of the internals of the Skills component itself as component architecture. As
skills are, by definition, specific to the application domain this modeling concerns more the
explicit handling of the dependencies between “skillsets” than the reuse of the components.
However, some skills, while being specific to our application, are shared by several agent
types. Based on the agent class diagram presented in Figure 5.8, we derived the skills
components tree presented in Figure 8.6a. As an example, Figure 8.6b shows the composition
of the Skills component of a model agent. As a remark, we see on the left figure that variable
and output agents share the same skills. This pragmatic choice comes from the fact that, since
the user can act on the problem at any time, a variable agent can become an output agent and
vice versa.

This tree-like structure of the skills components is not only a good way from engineering
point of view to factor implementation code, but is also efficient in regard of the functioning
of NCSs. As different NCSs are shared by different agent types at different levels, this
organization enables an efficient representation of which cooperative behavior is common to
which agents. The NCSs corresponding to the different components are shown in Figure 8.7

8.3.2 Communication

The communication view (Figure 8.8) presents the components related to the communica-
tion capabilities of the agent.

This view contains the Message Box component, which contains the messages sent to the
agent. The Message Box stores the messages into the State Vault and provides a direct access
to the Skills and Behavior components.

This figure presents several ports which need to be provided from the environment to the
agent. The environment must give an unique Reference to the agent, which will be used by
the other agents to communicate with it. The environment must also provides some ports to
communicate with the other agents and outside of the system.

An Adaptive MAS for Self-Organizing Continuous Optimization 129

III

ADELFE and MAY Architecture

Common Skills

Variable/Output
Skills

Internal Model
Skills

Model Skills Criterion Skills

Objective Skills Constraint Skills

(a) Skills components dependencies tree.

Common Skills

Variable/Output
Skills

Internal Model
Skills

Model Skills Criterion Skills

Objective Skills Constraint Skills

(b) Model agent skills composition.

Figure 8.6: Skills component internals.

Common Skills

Variable/Output
Skills

Internal Model
Skills

Model Skills Criterion Skills

Objective Skills Constraint Skills

Asynchronous messages
Conflicting requests

Hidden dependencies
Cycle solving

Cooperative trajectories
(variables)

Cooperative trajectories
(models)

Figure 8.7: Skills components dependencies tree with corresponding NCSs.

130 Tom Jorquera

8.4. MAY MAS Architecture

III

Agent (communication vue)

Behavior

StateVault

IStateVaultWriter

MsgBox[Msg, EnvMSg]

Push[Msg]

Push[EnvMsg]

Pull[List[Msg]] Pull[List[EnvMsg]]

Skills[SkillsType]

Pull[Ref] IAgentFinder[Ref] Send[Msg, Ref]

SendEnv[EnvMsg]

Figure 8.8: Agent Architecture — Communication view.

8.3.3 Monitoring

The monitoring view (Figure 8.9) presents the components related to the monitoring of the
agent. It is used to observe the agents states and their modifications.

The new component introduced in this view is the Monitor. The Monitor provides two
ports to the environment. The first port is used for external monitoring interfaces to subscribe
to be informed of changes in the state of the agent. The second is used to provide informations
concerning changes of a specific part of the agent. Thus, an external monitoring interface can
subscribe in order to be notified when the state of the agent changes using the first port, and
then use the second port to access to the specific information it wants to monitor.

In order to provide its capabilities, the monitor component needs to be informed by
the Behavior component before and after each step, to read and compare the monitored
informations into the State Vault.

8.4 MAY MAS Architecture

The MAY framework does not only allow to design the architecture of the agents, but
can also be used to design the whole architecture of the MAS. This MAS architecture defines

An Adaptive MAS for Self-Organizing Continuous Optimization 131

III

ADELFE and MAY Architecture

Agent (monitoring vue)

Behavior

MonitorStateVault

IMonitorSubscriber[Ref]

IMonitoringInformations

Do (preStep) Do (postStep)

IStateVaultReader

Figure 8.9: Agent Architecture — Monitoring view.

how the agents can interact among themselves and with their environment. Concerning our
prototype, this architecture first provides support for message passing among the agents.
The architecture of the system, which is explained below, is shown on Figure 8.10.

In order to support the integration of multiple agent instances into the global system
architecture, MAY provides the concept of transverse. A transverse is a special kind of
component which makes the liaison between a component on one side and multiple instances
of a component on the other. The main use of transverses is to connect all agents instances to
the other components of the system.

The components SendService and ReceiveService are MAY components used to exchange
messages between the agents. While they are usually directly connected together, we in-
serted between them a MsgMonitor component, which allows us to monitor the messages
transmissions. The agents also have the capability to create log messages to be written into
log files using the Log Service component.

Some interfaces for configuring and monitoring the agents are exposed to the outside
of the MAS through the Configuration and Agent Monitor transverses. The Agent Monitor
component exposes some representative information on the agents, while the Configuration
component offers a direct access to the agent state vault, allowing to examine the raw data
as well as offering ways to the user to interact with the agents (changing values, constraints
thresholds etc.).

A more complex monitoring interface is provided by the System Monitor. This component

132 Tom Jorquera

8.4. MAY MAS Architecture

III

MAS

Agent
(mult iple

instances)

ReceiveService
transverse

SendService
transverse

send

receive deposit

Scheduled
transverse

step

System Monitor

MsgMonitor

deposit

ControlerExecutor execute

control

execution control

system monitoring

Configuration
transverse

Agent Monitor
transverse

Log Service

vault accessor monitoring

logging

configuration agent monitoring

Figure 8.10: MAS Architecture.

An Adaptive MAS for Self-Organizing Continuous Optimization 133

III

ADELFE and MAY Architecture

not only allows for advanced monitoring functionalities (like subscribing to changes notifi-
cations), but also handles the execution of the system though the Executor component. The
Executor handles the low-level execution concerns, like creating threads and executing tasks,
and is in charge of executing the code of the agents through the Scheduled component. A very
similar configuration (not presented on the diagram) allows the agents to exchange messages
with the outside of the system. The System Monitor is linked to a Controler component, which
is in charge of exposing a convenient execution control interface for the user or for an external
program.

8.5 Integration into the Prototype

This implementation of the MAS was part of a collective development effort to provide
a functional prototype. The goal of this prototype is to be an end-user aimed tool of the
possibilities offered by agent-based continuous optimization.

The development of the prototype was carried mainly by three partners of the ID4CS
project, including ourselves, each in charge of a different aspect.

The prototype can be divided in three parts: The Graphical User Interface (GUI), the
core module (CORE) and the Multi-Agent System (MAS). The CORE provides a common
representation of the manipulated data and is in charge of maintaining consistency between
the GUI and the MAS.

These three modules communicate using the OSGi framework2.

8.5.1 MAS

The MAS implementation is the main contribution of this thesis and was already presented
in the previous parts. The only additional work was to encapsulate the implementation into
an OSGi bundle which exposes the functionalities corresponding to the external services
exposed by the MAS architecture and presented in the previous section.

8.5.2 CORE

The CORE module is responsible of maintaining consistency of the manipulated data. It
serves as a middle-man between the MAS and the GUI. It also makes possible to enable data
persistence by providing a serialization/deserialization service.

8.5.3 GUI

The GUI was build using the Eclipse Rich Client Platform (RCP)3. RCP allows to compose
graphical interface components into a user interface. It was used to propose a graphical tool
inspired by existing development environments, providing the user with the possibility to
define workspaces in which it can define problem elements which can then be used to define
optimization problems.

2http://www.osgi.org
3http://wiki.eclipse.org/index.php/Rich_Client_Platform

134 Tom Jorquera

http://www.osgi.org
http://wiki.eclipse.org/index.php/Rich_Client_Platform

8.5. Integration into the Prototype

III

Figure 8.11: User Interface of our prototype (problem canvas view).

By combining these three modules, we obtained a prototype which can be used to
create optimization problems. To create a problem, the user can either provide a textual
definition or use the graphical tools. In the last case, the user defines different reusable
components (variables, models etc.). He is then able to drag-and-drop them from an element
palette on a graph canvas and to draw links between the different elements, effectively
creating the problem using our NDMO graph representation. Either way, the problem is
automatically translated in an instance of the MAS, which can be controlled by the user
during the optimization process. A screenshot of our prototype, showing the graph canvas
on which the graph of a problem is currently being created, is shown on Figure 8.11.

An Adaptive MAS for Self-Organizing Continuous Optimization 135

9 Collective Problem Solving

Patterns

We have seen in the previous chapter how the ADELFE methodology was used for
the design of AMAS, from the general requirements to the implementation of the agents.
However a current limitation of ADELFE (shared with most of the existing comparable
methods) comes from the fact that it aims to be applicable for designing MAS intended for
diverse application fields (problem solving in its broadest sense, simulation, etc.). This desire
to be usable for a large spectrum of applications has the drawback that the recommendations
and guidelines of ADELFE are often quite abstract and high-level. This makes the task of
actually designing an AMAS for a precise application domain difficult for non multi-agent
experts.
This limitation has already been observed in previous works, and has given birth to an
ongoing effort in our team to provide a modular toolkit named AMAS for Optimization
(AMAS4Opt), with the goal to supplement ADELFE and assist AMAS designers when
designing AMAS for problem solving. In the same way that some contributions have already
been proposed in the context of combinatorial optimization (see [Kad11]), we will now see
how we can propose to enrich the toolkit in the context of continuous optimization.

In this chapter, we take a step back from the MAS we described in part II and see how our
contribution can be made more general, not only to the benefit of the scientific community,
but also for engineers by enriching AMAS4Opt.
Continuous optimization was a mostly unexplored application domain in regard to multi-
agent based algorithms. By taking the (somewhat ambitious) task to propose a MAS which
would be applicable for this domain as a whole, some of the patterns identified and some of
the mechanisms we proposed can be used in a more general context than our system.

As continuous optimization is in itself an abstract mathematical field, we too had to
abstract ourselves from concrete applications. We did not have the possibility to reduce the
set of possible configurations and thus we had the occasion to encounter a variety of problems
which have been mostly ignored before. Indeed, the graph representations of numerical
optimization problems are quite diverse, and can present some topological properties not
present in existing MAS formalisms.

In the description of our system, we presented a set of NCSs (Non Cooperative Situations),
and the specifics mechanisms we introduced to handle them. We believe that these NCSs
are only the instantiation of more general problematic topologies, which we name Collective
Problem Solving Patterns (CPSP). The patterns are not restricted to continuous optimization
and can potentially be encountered in all sorts of application domains.

An Adaptive MAS for Self-Organizing Continuous Optimization 137

III

Collective Problem Solving Patterns

Architecture and software development has greatly benefited from the identification of
common design patterns. In the same way, we believe that the identification of these patterns
as such, as well as of specific solutions to handle them, could lead to a great improvement for
the design of agent-based systems as a whole.

Consequently, we will present in this part how the NCSs we identified during the design
of our system can be abstracted in the broader form of CPSPs.

9.1 Introduction - Collective Problem Solving Patterns are not De-
sign Patterns

Before describing the CPSPs in themselves, we must explain how these patterns differ
from the existing design patterns for MAS.

There is already an existing (if limited) corpus of design patterns for MAS. These patterns
have usually in scope either the design of the organizational structure of a system or the
design of the behavior architecture of the agents. They concern the design of the system itself
regarding the target application domain. Consequently they are relevant for the design of the
organization of the system, according to the application domain. What we propose here is a
different sort of patterns, which concerns the behavior of the agent, according to an existing
organization. Design Patterns concern the structural aspects of the system, while Collective
Problem Solving Patterns concerns its functional aspects.

In this regard, CPSPs are less generic than Design Patterns. Indeed the latter can be
applied to the whole range of MAS, while the former only concerns MAS designed for
problem solving (excluding, for example, MAS for simulation).
These two kinds of patterns should be seen as complementary. First the designer could use
design pattern to design the structure of the MAS according to the needs of the application
domain. Then he could use CPSPs to identify and solve specific problems resulting from
such modeling and from the application domain itself.

As we want a description of our patterns which is domain-free, we cannot re-use the
NDMO modeling we introduced in 5.1, which is dedicated to the domain of continuous opti-
mization. Consequently, we will now introduce a higher-level formalism, which concentrates
on the relations between the agents of the system. To keep this formalism short and simple,
we will make some assumptions about the functioning of the system.

We consider systems composed of autonomous agents and resources. An agent may
require that some resources be in a specific state to accomplish its local goal. We will also
suppose that a resource is controlled by one agent and one agent only. We believe that this
simplifying assumption does not impede on the generality of the formalism (since a system
where two agents share the control of a resource can be viewed as equivalent to a system
where both agents send requests to a third one solely in charge of it). At last we will suppose
that agents interact among themselves by direct message passing.

138 Tom Jorquera

9.2. Description of a Problem Solving Pattern

III

0..n1..n
 solicit

Transformer

Provider Solicitor

Figure 9.1: class diagram of the Provider-Solicitor modeling.

9.2 Description of a Problem Solving Pattern

9.2.1 Agent Roles

The work of [Kad11] proposed a modeling of agent roles related to the application domain
of constrained combinatorial optimization composed of the Service and Constrained roles.
While this taxonomy was adequate for the description of this application domain, it is not
general enough for our goal. Since we want the CPSPs to be abstracted from any application
domain, it is also necessary for the agent role modeling to be abstracted. Concerning the
patterns we present in this article, we identified three different types of agent roles: Provider,
Solicitor and Transformer. There is an obvious matching between service and provider roles,
and between constrainted and solicitor roles, indicating that these two modelings are essentially
representing similar things at different abstraction levels.

The Provider role represents the fact that the agent is in charge of a given resource, which
can be of use to others agents in the system. The agent is responsible for choosing the state of
the resource or giving access to it based on solicitations of the others agents.

The Solicitor role represents the fact that the agent requires that some resource(s), which
it does not control, be in a specific state, in order to accomplish its goal. Consequently, the
agent needs to solicit the agent(s) controlling the relevant resource(s).

The Transformer role is a combination of the Provider and Solicitor roles. The transformer
agent controls a resource but the state of the resource is dependent of some other resources
not controlled by the agent. While this role can be represented by assigning both Provider
and Solicitor roles to the agent, we found this role common enough to be worth a specific
representation. As we will see, transformer agents sometimes play a specific role in some
CPSPs, as they can be a source of delay or obfuscation of information.

On Figure 9.1 is shown the very simple class diagram representing the relationships
between these three roles.

It is important to understand that an agent is not limited to one role only. For a given
system an agent can, depending on the context, assume any combination of these roles. Thus
an agent can both solicit others agents regarding a resource, while being at the same time a
provider of another resource. In this regard, an agent can even be a producer and solicitor of
the same resource. For example the agent is in charge of a specific resource, but also benefits
from it. In this case the agent can possibly be in conflict with other agents regarding the state

An Adaptive MAS for Self-Organizing Continuous Optimization 139

III

Collective Problem Solving Patterns

of the resource, and decides (as a producer) to go against its own interest (as a solicitor) in
order to help another agent deemed more important. Obviously, in most implementations,
the different roles of the agent would not be as much segregated, and the agent would not
strictly communicate with itself using message passing. This distinction should not be a
problem in practice (this kind of configuration can however trigger other CPSPs, see for
example 6.3.5).

For example, in the case of our system, the different agent types have relatively defined
and fixed roles. A design variable agent linked with at least one other agent has a provider
role. Constraint and objectives agents are solicitors. Models agents have a transformer role, as
for output agents which are in input of at least one model or criterion agents.
The only agents which do not have roles corresponding to this taxonomy are the variable
and output agents which are not used as input by any other agent. And indeed in our system
these agents would have a basically non-existent role. Of course the user can still manually
intervene to change the topology of the problem, changing at the same time the roles of these
agents.

9.2.2 Pattern Description

For each CPSP, we provide a short description. This description will obviously be quite
similar to the description of the NCSs in 6.3, as they correspond to the same pattern, only
from different abstraction levels.

As we already presented the details of the different mechanisms in section 6.3, we will
not detail them again in this part. Moreover, the CPSPs aim to be general patterns applicable
to multiple domains, consequently it is not possible to fully specify them. A part of the
instantiation work must still be done by the designer. However we discuss some conditions
which are necessary in order to instantiate to the domain the handling mechanisms we
proposed.

For each CPSP, we also provide a synthetic “blueprint” which is composed of two parts:

1. a representative agent configuration of the CPSP (using the agent roles introduced in
section 9.2.1)

2. a summary of the mechanisms involved in the solving of the CPSP.

These blueprints are based on the template shown on Figure 9.2.

9.3 Identified Collective Problem Solving Patterns

In this section, we present the CPSPs we identified from the NCSs we encountered during
the design of our MAS.

9.3.1 Conflicting Requests

In this situation a provider agent is requested to do different conflicting actions from
several solicitors agents. This CPSP is probably the simplest one and was already identified
as a recurring situation in previous works on AMAS, as it is the direct instantiation of the
Conflict NCS category (as presented in section 4.2).

140 Tom Jorquera

9.3. Identi�ed Collective Problem Solving Patterns

III

CPSP name

Mechanism

Provider

Transformer

Solicitor

Figure 9.2: Template on CPSP blueprints.

Conflicting Requests

Criticality

Figure 9.3: Conflicting Requests blueprint.

The blueprint of this CPSP is shown on Figure 9.3.

In order to apply the blueprint, the designer must be able to define a common and
comparable measure of the “dissatisfaction” state of the solicitors. This criticality must be
transmitted with the requests made by the solicitor agent.

The use of a criticality measure as way to discriminate between the different requests is a
“tried-and-true” technique which has been applied to multiple AMAS applications1.
As a remark, a measure of dissatisfaction presents an advantage over a measure of satisfaction
in the fact that it is often possible to estimate the state of maximal satisfaction of the agent
(every requirement is perfectly satisfied), but not always possible to do so for the maximal
dissatisfaction. Consequently a measure of satisfaction would have an upper bound but no
lower bound, while a measure of dissatisfaction has a lower bound and no upper bound.
This latter is easier to manipulate and reason with as it can be easily be represented by an
unbounded positive value.

1http://www.irit.fr/-Projects,473-?lang=en

An Adaptive MAS for Self-Organizing Continuous Optimization 141

http://www.irit.fr/-Projects,473-?lang=en

III

Collective Problem Solving Patterns

Cooperative Trajectories

Criticality

Participation

Figure 9.4: Cooperative Trajectories.

9.3.2 Cooperative Trajectories

This CPSP is an extension of the Conflicting Requests CPSP. In this case, several providers
agents are solicited by conflicting solicitors. However the impact of each provider on each
solicitor is different. Consequently the provider agents should be able to coordinate in order
to improve every solicitors, but fail to do so because they cannot discriminate between the
contradictory requests.

The blueprint of this CPSP is shown on Figure 9.4.

To apply the blueprint, the designer should introduce, in addition to a criticality measure,
a participation measure representing for a solicitor the impact of a provider regarding the
rest of the system.

9.3.3 Cycle Solving

This CPSP happens when several transformer agents are dependent of each others to
provide their resources. It can lead to cycling behaviors where one agent sends a request to
the other agent, which sends back a request to the first agent etc. Depending on the nature of
the system and the configuration of the problem, this cycle can naturally converges toward a
fixed point, or diverges, never managing to reach an equilibrium.

The blueprint of this CPSP is shown on Figure 9.5.

To apply the blueprint, the designer must add to the exchanged messages a unique
signature allowing to identify without ambiguity the agent at the origin of a message.

9.3.4 Hidden Dependencies

The hidden Dependency CPSP arises when a solicitor agent assumes the agents to which
it sends requests are independent providers, while one of them is in fact dependent of the
other (transformer role). This pattern leads to a suboptimal behavior when the solicitor agent
sends requests which are contradictory for the “top-most” provider agent.

The blueprint of this CPSP is shown on Figure 9.6.

142 Tom Jorquera

9.3. Identi�ed Collective Problem Solving Patterns

III

Cycles

Signature

Figure 9.5: Cycle Solving blueprint.

Hidden Dependency

Signature

Influence

Figure 9.6: Hidden Dependencies blueprint.

To apply this blueprint, the designer has to complement the messages exchanged by the
agents with unique signatures which uniquely identify the agent that is the origin of the
messages. The designer must also be able to define an influence measure to be transmitted
with the request, that represent the impact of the recipient on the solicitor. These influences
measures must be comparable for a same origin.

9.3.5 Asynchronous Requests

This CPSP arises when a provider agent receives requests from multiple solicitor agents,
but these requests arrive in a desynchronized manner. A possible suboptimal behavior can
happen when the provider agent decides to satisfy a request from a solicitor, and receives
afterward a more important request contradicting the first one.

The blueprint of this CPSP is shown on Figure 9.7.

To apply this blueprint, the designer must be able to define an influence measure for each
solicitor agent, that represents the impact of the recipient on the solicitor. This influence will
allow the agent to determine when it received enough informations to make a sufficiently
informed decision, without needing to wait for all the messages.
Alternatively, if the delay of the agents answers is negligible, or if for any other reason it

An Adaptive MAS for Self-Organizing Continuous Optimization 143

III

Collective Problem Solving Patterns

Asynchronous Requests

Influence

Figure 9.7: Asynchronous Requests blueprint.

is deemed acceptable that an agent waits for all the messages before taking a decision, the
mechanism can be adapted to avoid using influence altogether.

9.4 Conclusion on Collective Problem Solving Patterns

We have seen previously that the main contribution of this thesis was the proposal of a
novel agent-based algorithm for the solving of complex continuous optimization problem. In
this chapter we present an additional contribution in the form of general Collective Problem
Solving Patterns. These CPSPs are the generalization of the different NCSs we identified
during the design of our MAS and have for goal to assist the designer of the system in the
identification of potential problems which may arise from the agents organization, as well as
to propose some possible handling mechanisms to solve them.

We presented a general agent role modeling which is abstracted from any precise applica-
tion domain. This modeling presents the Provider and Solicitor roles, and their extension by
the Transformer role.

Using this modeling, we presented several CPSP blueprints which expose in a synthetic
manner the base agent pattern and the mechanisms involved in the solving of the CPSP. We
also presented some of the conditions required for the designer to be able to instantiate the
solving mechanism for his system.

Our agent role modeling is an extension of the one in [Kad11], in which a first abstraction
work has been done to identify general agent roles for constrained optimization. This
previous work led to the identification of the serviceand constrainted roles. However this
previous modeling concentrated on the field of AMAS for constrained optimization. In
this regard it was not adequate for the description of the CPSPs. Moreover, by explicitly
introducing the transformer role in our Provider-Solicitor modeling, we are able to express
more clearly some of the CPSPs (e.g. the Hidden Dependency pattern).
Consequently, these two modelings must not be seen as conflicting or redundant, but as
complementary. The Provider-Solicitor model being more general, but more abstracted, and
the Service-Constrained modeling being more specialized but more detailed in its guidelines
to the designer.

144 Tom Jorquera

9.4. Conclusion on Collective Problem Solving Patterns

IV

As a final remark, we would like to point out how NCS-based agent behaviors, such
as proposed by the AMAS theory, make a perfect fit for instantiating behavioral patterns
such as CPSPs. Indeed, subsumption-based behavior architectures are very appropriate to
model this kind of “exception”-like situations. Should this kind of patterns identification and
reuse becomes more widely used, one could expect this way of modeling agent behavior to
becomes quite popular.

An Adaptive MAS for Self-Organizing Continuous Optimization 145

An Adaptive Multi-Agent System for
Self-Organizing Continuous Optimization

Experiments and Validation

An Adaptive MAS for Self-Organizing Continuous Optimization 147

IV

In this part we present some of the results we obtained with our system on several
experiments.

Our validation approach for our system was divided in three phases:

3 Validating the mechanisms on simple representative test cases
3 Evaluating the optimization performances and comparison with existing methods on

benchmark test cases
3 Testing the raw performances and scalability capabilities using automatically generated

optimization problems.

The optimization problems of the first type are small enough to be solved by classical op-
timization techniques, however they exhibit interesting properties representative of complex
optimization problems. We used these problems to identify and tune the required cooperative
mechanisms for our system.
We also made additional experiments in order to evaluate others functionalities: uncertainties
propagation and adaptations to changes.

The optimization problems of the second type correspond to test cases used by the
scientific community as benchmarks for comparing MDO methods.

The optimization problems of the third type are algorithmically generated with the
purpose of producing a base of problems of different sizes and topologies. This allows us to
study the behavior when modifying the size of the problems to solve.

In every experiment, we tested the system with only the internal optimization mechanisms
of the agents, without providing them with external optimization tools.

An Adaptive MAS for Self-Organizing Continuous Optimization 149

10 Behavior Validation using

Academic Test Cases

This section presents some of the results we obtained on several test cases: Turbofan
Problem, Viennet1, Rosenbrock’s valley and Alexandrov. These test cases are not big enough
to be truly qualified of “complex”, but exhibit specific properties which can be found in
complex test cases. Consequently they are useful to study and validate the cooperative
behavior of the agents.

10.1 Turbofan Problem

We previously introduce the turbofan problem in 5.1. As stated before, the problem
concerns two design variables pi_c and bpr. pi_c is defined inside the interval [20 - 40] and bpr
inside [2 - 10]. The model produces three variables Tdm0, s and f r.

The problem has two objectives, maximizing Tdm0 and minimizing s, under the constraint
s ≤ 155 and f r ≥ 4. This problem exhibits contradictory criteria that need to be handled
at different levels (mins and s ≤ 155 needs to be handled by s, the resulting request from
s and the others criteria must be handled by Turbo f anModel), with cooperative trajectory
requirements for bpr and pi_c.

On Figure 10.1, the system is executed 100 times with random starting points for each
design variable, using only internal optimization mechanisms. As we can see, the system
consistently converges toward the same optimal solution, i.e. the system finds an optimal
values of for the two objectives with the constraints satisfied.

10.2 Viennet1

The Viennet1 test case is part of a series of problems proposed in [VFM96] to evaluate
multi-criteria optimization techniques. This problem involves three objectives. Its analytical
formulation is:

Minimize o1 = x2 + (y− 1)2

o2 = x2 + (y + 1)2

o3 = (x− 1)2 + y2 + 2

where x, y ∈ [−4; 4]

An Adaptive MAS for Self-Organizing Continuous Optimization 151

IV

Behavior Validation using Academic Test Cases

10 20 30 40 50

20
0

25
0

30
0

35
0

nb evaluations of o1

o1
 v

al
ue

0 10 20 30 40 50

12
0

14
0

16
0

18
0

nb evaluations of o2

o2
 v

al
ue

Figure 10.1: Convergence of the Turbofan objectives for 100 random starting points.

Figure 10.2 illustrates the convergence of the system toward a valid solution with 100 exe-
cutions from randomly chosen starting points, using only internal optimization mechanisms.

0 10 20 30 40 50 60 70

0
10

20
30

nb evaluations of viennet_o1

vi
en

ne
t_

o1
 v

al
ue

0 10 20 30 40 50 60 70

0
10

20
30

nb evaluations of viennet_o2

vi
en

ne
t_

o2
 v

al
ue

0 10 20 30 40 50 60 70

10
20

30
40

nb evaluations of viennet_o3

vi
en

ne
t_

o3
 v

al
ue

Figure 10.2: Convergence of Viennet1 objectives for 100 random starting points.

10.3 Rosenbrock’s valley

Rosenbrock’s valley is non-convex function commonly used to test convergence capabili-
ties of an optimization method [Ros60].

The analytical formulation of this problem (for two dimensions) is:

Minimize f (x, y) = (1− x)2 + 100(y− x2)2

The Rosenbrock’s valley problem is interesting in the fact that the global minimum is
“hidden” into a narrow parabolic valley. The optimization method must thus get down into
the valley and manage to follow its bottom until reaching the global optimum. Consequently
it is a very adequate problem to test the cooperative trajectories mechanisms of our system.

The results presented on Figure 10.3c are for the two-dimensional version of the problem
with a definition domain of [-5; 5] for each design variable.

This problem was also used in [Kro+94a] as an application example of the Collaborative

152 Tom Jorquera

10.4. Alexandrov Problem

IV

(a) Rosenbrock’s valley (from Martin Doege).

-2 0 2
4

2

0

Start

Solution

(b) Example of cooperative trajectories on
Rosebrock’s valley (starting point (-2, 4)).

0 200 400 600 800

0
10

00
0

20
00

0
30

00
0

nb evaluations of objective

ob
je

ct
iv

e
va

lu
e

(c) Convergence of Rosenbrock objective
for 100 random starting points.

Figure 10.3: Rosenbrock’s valley.

Optimization method, presented in chapter 3 (with performances varying from 141 to 1556
total iterations depending on the additional information used).

10.4 Alexandrov Problem

Our last test case is inspired from an academic example taken in literature by Alexandrov
et al[AL02]. This example presents many of the commons characteristics of MDO problems: a
cycle (albeit converging) and multiple criteria requiring cooperative trajectories. In the origi-
nal study, the example was used to illustrate some properties of Collaborative Optimization,
which we presented earlier, in terms of reformulation. While the original work only gave the
structure of the problem, we adapted it with meaningful values and equations.

The mathematical formulation of the problem and the corresponding agent graph can
be seen in Figure 10.4. Interestingly, the NDMO representation is quite similar to the one

An Adaptive MAS for Self-Organizing Continuous Optimization 153

http://commons.wikimedia.org/wiki/File:Rosenbrock_function.svg

IV

Behavior Validation using Academic Test Cases

a1 = (l1 − a2)/2
a2 = (l2 − a1)/2

min 1
2 (a2

1 + 10a2
2 + 5(s− 3)2)

subject to
s + l1 ≤ 1
−s + l2 ≤ −2

(a) mathematical formulation.

s

l1 l2

a1=(l1- a2)/2

a1

a2=(l2- a1)/2

a2

s+l1<=1 -s+l2<=-2

½(a12+10a22+5(s-3)2)

(b) corresponding agent graph.

Figure 10.4: Alexandrov problem.

adopted by the original authors of the problem.

On Figure 10.5, the behavior of the design variables agents l1, l2 and s, as well the evolution
of the objective, can be observed on one instance of the problem with random starting points.

On Figure 10.6, we show the evolution of the objective over 100 iterations with starting
points for each design variable randomly drawn over the interval [-100; 100]. We can see
how the system converges toward the same optimum despite the wildly different initial
conditions.

10.5 Analysis of Academic Test Cases

In this section we presented several academic test cases exhibiting classical properties
of complex continuous optimization problems. We shown how the system was able to
consistently converge on each test case toward an optimum solution, for multiple starting
points.

Summarized results illustrating the convergence of the system are presented on Table
10.1. The first group of values represents the number of evaluations which was needed for
respectively 10%, 50% and 90% of the instances to find the best solution. The second group
represents the average distance to the best solution (truncated at 10−3) among all instances at
different times (0% being the start 100% being the end of the solving in the worst case).

These results tend to validate the correctness of our approach, proving that the conjunction
of the agents nominal behaviors and cooperative mechanisms allows to solve correct solution
to diverse optimization problems.

We will now present the second part of our validation, by making experiment on larger
test cases in order to validate the system behavior on complex problem and to compare the
performances of our system with other complex optimization methods.

154 Tom Jorquera

10.5. Analysis of Academic Test Cases

IV

0 20 40 60 80

−
20

−
10

0
5

10

nb evaluations of l1

l1
 v

al
ue

0 20 40 60 80

−
40

−
30

−
20

−
10

0

nb evaluations of l2

l2
 v

al
ue

0 20 40 60 80

−
80

−
40

0
20

40

nb evaluations of s

s
va

lu
e

0 20 40 60 80

0
50

00
15

00
0

nb evaluations of o

o
va

lu
e

Figure 10.5: Alexandrov agents behavior.

0 20 40 60 800e
+

00
4e

+
04

8e
+

04

nb evaluations of o

o
va

lu
e

Figure 10.6: Convergence of the Alexandrov objective for 100 random starting points.

An Adaptive MAS for Self-Organizing Continuous Optimization 155

IV

Behavior Validation using Academic Test Cases

Table 10.1: Summary of experiments results for the tests cases

nb. evaluations to best average distance to best
10% 50% 90% 0% (start) 30% 60% 100% (end)

Turbofan_o1 22 38 50 67.654 21.563 1.78 0.313
Turbofan_o2 14 23 32 23.876 2.485 0.387 0.101

Viennet_o1 8 17 29 8.514 0.458 0.033 0.021
Viennet_o2 9 15 27 9.412 0.37 0.043 0.021
Viennet_o3 9 14 23 10.622 0.102 0.001 0.0

Rosenbrock 19 47 56 13749.427 123.44 4.564 2.201

Alexandrov 36 52 70 13109.169 1236.501 15.434 0.059

10.6 Optimization under Uncertainties

While it is not the focus of our system, we worked with our partners of the ID4CS project
to illustrate the uncertainties propagation capabilities presented in section 7. To this end, we
were provided with a preliminary aircraft design test case inspired from [SN08]. The test
case is declined into two versions: a deterministic optimization problem and an optimization
problem under uncertainties.

The deterministic version is the following:

min f =
2g3LσSd

CL(AMmσnηP,CrE)2σ(H)

1(
mMTO

SW

) (PTO

mMTO

)3

s.t. g1 =
mMTO

SW
− kLσCL,max,LSLFL

mML/mMTO
≤ 0

g2 =
kTOVg

sTOFLσCL,max,TOηP,TO
− PTO/mMTO

mMTO/SW
≤ 0

g3 = VCR
Vmd

EηP,CR AMmσn

√
πAeρ0σ(H)g

4Emax
− PTO

MMTO

√
mMTO

SW
≤ 0

where
mMTO

SW
and

PTO

mMTO
are the two design variables of the problem, representing

respectively the power/mass ratio and the wing loading of the aircraft, and the other values
are constant. The three constraints concern respectively the takeoff length, landing length and

cruising speed. The solution to the deterministic problem is
mMTO

SW
= 377 and

PTO

mMTO
= 187,

for f = 2.15E + 08.

In the version with uncertainties, normal distribution laws are associated with some
variables of the problem. The variables and associated uncertainties are shown in Table 10.2

The new objective is not to minimize f but to minimize E(f), the expected value of the
function. The new constraints are P(gi ≤ 0) ≥ 0.9, ∀i ∈ {1, 2, 3}.

156 Tom Jorquera

10.7. Adaptation to Perturbations

IV

Table 10.2: Uncertainties associated with the variables

Variable Expected value Standard deviation

CL,max,L 2.50 0.250
CL,max,TO 2.10 0.210
E 12.49 1.249
ηP,CR 0.86 0.086

We slightly adapted our MAS to mimic a classical sequential optimization scheme. The
basic idea of this type of method is to start by doing a deterministic optimization of the
problem and, when the optimization has converged, to switch to an optimization under
uncertainties using the deterministic solution point as a starting point. For our MAS, we
instantiated this method by making the agents start doing a deterministic optimization.
When a certain convergence condition is detected, the agents automatically switch to op-
timization under uncertainties. A difference is that the system is not interrupted between
the deterministic optimization and optimization under uncertainties. The agents handle the
transition automatically by switching to uncertain values.

The solution to the problem under uncertainties is
mMTO

SW
= 329 and

PTO

mMTO
= 244

For the uncertainties propagations, the agents are provided with Monte-Carlo propagators.
These propagators draw 50000 random values on the inputs following the uncertainties
associated with each input, and return a set of points for each outputs. The constraints and
objectives can directly use these sets of points, as explained in chapter 7.

The trajectory of the system is shown on Figure 10.7. The red dashed curves represent
the deterministic constraints and the red dotted curves an approximation of the constraints
with uncertainties. The blue and green circles represent respectively the deterministic and
robust solution points. The starting point (300, 300) is indicated by the letter S. We can see
on the figure how, in the first part, the system converges toward the deterministic solution
point and, on the second part, how it switches to uncertainties and changes its direction to
converges on the robust solution point.

10.7 Adaptation to Perturbations

10.7.1 Perturbated Alexandrov Problem

On Figure 10.8, we can observe the reaction of the multi-agent system to a perturbation.
During the solving of the previous experimentation on the problem, we changed the threshold
of the constraint s + l1 ≤ 1 to s + l1 ≤ −4 (the change is indicated by a dotted line on the
charts). The system dynamically adapts to the constraint changed and converges toward a
new solution which satisfies the updated constraint.

10.7.2 Perturbated Turbofan Problem

On Figure 10.9, we illustrate the adaptation capabilities of the system by subjecting
turbofan problem we introduced previously to a series of both strong and faster successive

An Adaptive MAS for Self-Organizing Continuous Optimization 157

IV

Behavior Validation using Academic Test Cases

xxxxxxxxxxxxxx
xx

xx

xx

xx

xx

xx

xx
xx

xx
xx

xx
xxxx
xx
xxxx
xx

xx

xx
xxxxxxxx

xx

xx

xx

xx

xx

xx
xxx

250 300 350 400

15
0

20
0

25
0

30
0

35
0

Power/Mass Ratio

W
in

g
Lo

ad
in

g

S

Figure 10.7: Sequential optimization trajectory.

small changes to the problem topology (each perturbation is indicated by a dotted line).
First we create strong changes by modifying simultaneously both a constraint and the
definition domain of pi_c:

a. c1 changed from s <= 155 to s <= 165, max bound of pi_c changed from 40 to 50

b. c1 changed from s <= 165 to s <= 145, max bound of pi_c changed from 50 to 30

Then milder perturbations by only changing the definition domain of the variable:

c. max bound of pi_c changed from 30 to 35

d. max bound of pi_c changed from 35 to 40

e. max bound of pi_c changed from 40 to 45

The experiments show that the system consistently reacts to these perturbations by adapting
itself in order to find a new solution for the modified problem.

158 Tom Jorquera

10.7. Adaptation to Perturbations

IV40 60 80 100 120

−
15

−
10

−
5

nb evaluations of l1

l1
 v

al
ue

40 60 80 100 120

−
8

−
6

−
4

−
2

0

nb evaluations of l2

l2
 v

al
ue

40 60 80 100 120

−
1

0
1

2
3

4
5

6

nb evaluations of s

s
va

lu
e

40 60 80 100 120

0
20

40
60

80
12

0

nb evaluations of o

o
va

lu
e

Figure 10.8: Alexandrov agents behavior with perturbation (constraint change at dotted line).

An Adaptive MAS for Self-Organizing Continuous Optimization 159

IV

Behavior Validation using Academic Test Cases

0 50 100 200 300

20
30

40
50

number of evaluations of pi_c

pi
_c

 v
al

ue

a b c d e

0 50 100 200 30015
0

20
0

25
0

30
0

35
0

40
0

number of evaluations of o1

o1
 v

al
ue

a b c d e

0 50 100 200 300

12
0

14
0

16
0

18
0

number of evaluations of c1

c1
 v

al
ue

a b c d e

0 50 100 200 300

2
4

6
8

10

number of evaluations of bpr

bp
r

va
lu

e

a b c d e

0 50 100 200 300

12
0

14
0

16
0

18
0

number of evaluations of o2

o2
 v

al
ue

a b c d e

0 50 100 200 300

2
3

4
5

number of evaluations of c2

c2
 v

al
ue

a b c d e

Figure 10.9: Turbofan agents behavior with perturbations (changes at dotted lines).

160 Tom Jorquera

11 Comparison with Existing

Methods

In this chapter we provide a comparison of our MAS with existing MDO methods. This
comparison is based on the work of [PLB04; YSP08]. These two works are complementary as
both of them concern a common subset of representative MDO methods: Multidisciplineary
Feasible (MDF), Individual Discipline Feasible (IDF), Concurrent Subspace Optimization
(CSSO), Bilevel Integrated System Synthesis (BLISS) and Collaborative Optimization (CO).

The work of [PLB04] presents an analysis of these methods based on two test cases and
rank them on multiple criteria: Accuracy, Efficiency, Transparency, Simplicity, Portability.

The analysis of [YSP08] is based on different criteria, concentrating on the performances
regarding the number of functions calls and the additional informations required by each
methods. An interesting aspect of this comparison is that it provides several mathematical
test cases on which the methods are applied.

For our evaluation we use test cases provided by both works and compare the perfor-
mances of our system to the existing MDO methods. We then provide a comparison synthesis
based on the criteria and analysis presented in [PLB04].

In order to obtain comparable results with MDO methods, we adopted a problem model-
ing based on the disciplines division proposed in these works. To this end, we considered
that, for each test case, the natural formulation of the problem matched the proposed disci-
plines division. Consequently, for each test case, the mathematical models represented by
our model agents correspond to the proposed disciplines.

11.1 Comparison Criteria

For our comparisons we use the criteria proposed in [PLB04], which are defined as follow:

3 Accuracy: the quality of the solution proposed by the method, based on the distance
between the proposed solution and the real optimal values.

3 Efficiency: the computational cost to find the proposed solution, based on the number
of disciplinary evaluations.

3 Simplicity: the ease to instantiate and apply the method to different problems, based on
the number of optimizers and variables required to implement the examples.

3 Transparency: the capability to understand, modify or extend the method.
3 Portability: the feasibility to apply the method in the context of an existing work

An Adaptive MAS for Self-Organizing Continuous Optimization 161

IV

Comparison with Existing Methods

organization, based on the distributivity capabilities of the method.

The Accuracy criterion reflects the aptitude of the method to find the input values corre-
sponding to the optimum of the problem.

The Efficiency criterion concerns the computational cost required by the method to provide
its solution. When counting the number of evaluation calls, a distinction is made between
discipline evaluations and full problem evaluations, the latter being considered considerably
more costly than the former. Our MAS does not require any full problem evaluation, using
only disciplines evaluations.

The Simplicity criterion concerns the amount of work required to instantiate the method
to suit different optimization problem. The original authors chose to evaluate this criterion
using two measures: the number of optimizers involved and the number of additional
variables required by the method.

The Transparency criterion is the less well-defined and can be perceived as somewhat
subjective. The original authors give as an example that “a probability-based method can be
seamlessly integrated into a transparent formulation, which does not require major changes
of the architecture to accomplish the integration.”

The Portability criterion concerns the feasibility to integrate the method into an existing
organizational structure. This evaluation criterion is based on the capabilities of the method
to divide the concerns to match existing expert teams or specializations.

11.2 Comparison Problem 1

Our first comparison test case comes from [PLB04]. It was originally introduced in [SBR96]
to study the performances of the CSSO method. Its formulation is the following:

min f = x2
2 + x3 + y1 + e−y2

s.t. g1 =
y1

3.16
− 1 ≥ 0

g2 = 1− y2

24
≥ 0

where y1 = x2
1 + x2 + x3 − 0.2y2

y2 =
√

y1 + x1 + x3

with − 10 ≤ x1 ≤ 10

0 ≤ x2, x3 ≤ 10

The problem is divided into two disciplines. The discipline 1 corresponds to the compu-
tation of y1 and g1, while the discipline 2 corresponds to the computation of y2 and g2. The
authors use the same initial points x1 = 1, x2 = 5, x3 = 2 for each analysis. The optimum for
this problem is located at x1 = 1.9776, x2 = 0, x3 = 0, for which the value of f is 3.1834.

We present here the comparison of our method with the ones evaluated in [PLB04]. We
reproduce their results here and add our method to the comparisons under the term AMAS.

Regarding the simplicity criterion, the relevant measures are shown in Table 11.1.

162 Tom Jorquera

11.2. Comparison Problem 1

IV

Table 11.1: Comparison Problem 1 – Simplicity

Method No. Optimizers Additional variables

MDF 1 0
IDF 1 2
CSSO 3 3
CO 3 9
BLISS 3 3
AMAS 2 0

Table 11.2: Comparison Problem 1 – Efficiency

Method Coordination evaluations Discipline 1 Evaluations Discipline 2 Evaluations

MDF 24 216 216
IDF 62 54 54
CSSO 20 528 528
CO 249 6106 4515
BLISS 40 95 95
AMAS 0 201 201

In regard of the transparency criterion, the authors in [PLB04] note that MDF and IDF are
the most transparent, as the mathematical models and objectives are easily formulated and
modified. The CO method requires a little more attention in the formulation of the disciplinary
objectives. CSSO and BLISS are the more complex, needing respectively approximation
models and a sensitivity analysis.
Our method, as MDF can be directly derived from the analytical expression of the problem,
without requiring further work from the expert. However, as the problem is divided in two
disciplines, it will require two optimizers.

Concerning the portability criterion, the authors note that MDF and IDF, being central-
ized methods, are not flexible and cannot adapt to existing organizational structures. CO,
CSSO and BLISS on the other hand can be adapted to existing organization or distributed
computing requirements. However CSSO requires not only for each discipline to provide an
approximation of their state but need also an entire system analysis at each iteration. BLISS
requires additional calculations to calculate the sensitivities of the disciplines.
Our method is similar to CO, CSSO and BLISS as the experts can choose how to divide the
problem to match the organization of the disciplinary groups, without imposing additional
requirements concerning the formulation of the problem. It is also naturally distributable, as
each agent is an independent process.

In regard of the efficiency, the number of evaluations for each methods is detailed in Table
11.2.

Results for the accuracy are shown on Table 11.3. While MDF and IDF find the correct
solution, CSSO, CO and BLISS present slight errors. The authors note that CO and CSSO
introduce discrepancies in the computation of the outputs due to the approximation these
methods make.

Note that in our case, the rounding is done at a lower precision than in the other test

An Adaptive MAS for Self-Organizing Continuous Optimization 163

IV

Comparison with Existing Methods

Table 11.3: Comparison Problem 1 – Accuracy

Method x1 x2 x3 y1 y2 f

MDF 1.9776 0 0 3.16 3.7553 3.1834
IDF 1.9776 0 0 3.16 3.7553 3.1834
CSSO 1.9778 0 0 3.16 3.7675 3.1831
CO 1.9776 0 0 3.16 3.7556 3.1835
BLISS 1.9770 0 0 3.15 3.7544 3.1804
AMAS 1.97764 0 0 3.16 3.75528 3.18339

cases. This is voluntary to illustrate the fact that the constraint y2 is actually violated, but this
violation is lower than the rounding decimal, as per the criticality mechanism of constraint
agents we explained in 6.3.1.

11.3 Comparison Problem 2

For our second comparison test case, we selected one of the problems presented in
[YSP08]1:

min f = (z1 − 0.5)2 + (z2 − 0.5)2

s.t. g1 = 1.0− z1 ≤ 0

g2 = 1.0− z2 ≤ 0

where z1 = (b1 − 2.5) + (bc − 2.0)− 0.5z2

z2 = (b2 − 3.0) + (bc − 2.0)− 0.7z1

The problem is divided into two disciplines, the first one corresponding to the computa-
tion of z1 and g1, while the second one corresponds to the computation of z2 and g2.

We did not include MDOIS in the comparisons, as it is a specialized method applicable
only to specific problem topologies, and not a general MDO method (see section 3.2.5). On
Table 11.4 is shown the number of design variables and additional equality constraint for
each method.

Sadly, the authors did not provide the starting points they used for evaluating the number
of evaluations of the different methods. Consequently we cannot provide a meaningful
comparison of our method on this criterion. For our experiments, we choose to make 100
instances of the problem, with random starting value for the variables drawn between -100
and 100. As an indication, the median number of evaluations for the disciplines required by
our method to find the solution is indicated in Table 11.5. In Table 11.6 we show the median
value obtained over all the experiments for f .

1the original authors originally introduced two additional variables znc
1 and znc

2 . However these variables had
no impact on the problem in itself, consequently we did not reproduce them here

2results are median values over 100 iterations
3results is median value obtained over 100 iterations

164 Tom Jorquera

11.4. Comparison Synthesis

IV

Table 11.4: Comparison Problem 2 – Simplicity

Method No. Design Variables No. Equality Constraints

MDF 3 0
IDF 5 2
AAO 7 4
CSSO 7 2
BLISS 3 0
CO 9 2
AMAS 3 0

Table 11.5: Results on Comparison Problem 2 – Efficiency

Method Coordination evaluations Discipline 1 Evaluations Discipline 2 Evaluations

MDF 292 0 584
IDF 0 50 50
AAO 0 178 178
CSSO 449 1096 445
BLISS 358 752 744
CO 0 969 948
AMAS2 0 709 709

11.4 Comparison Synthesis

Here we present a synthesis of the comparison between our system and existing MDO
methods.

On Table 11.7, we reproduce the analysis of [PLB04] and add our own method (indicated
as AMAS) to the comparison. Note that the classification of the existing MDO methods is
based on the original work.

In regard of the accuracy criterion, our method provides good results, consistently con-
verging toward the optimum in both benchmarks. We classed it under MDF, as our method
still need to be provided with a precision, and allow for constraint violation under this
precision.

In regard of the efficiency criterion, our method is on part with the most efficient MDO
methods.Moreover, our experiments were done using only the agents internal optimization
mechanisms. Even better results could be expected if the agents were provided with adequate
external optimizers.

In regard of the simplicity criterion, for the number of objectives, our method requires n
optimizers (n being the number of models involved). In this regard it is less efficient than
MDF and IDF, which only require 1 optimizer, but is better than the other methods which
require n + 1 optimizers (1 by model plus 1 global optimizer). For the number of additional
variables, our method is on par with MDF, the best method in regard of this measure, as
neither of them require any additional variable.
The only method dominating our own in regard of this criterion is MDF. Our method can be
considered on par with IDF, as neither of them dominate the other on both measures.

An Adaptive MAS for Self-Organizing Continuous Optimization 165

IV

Comparison with Existing Methods

Table 11.6: Results on Comparison Problem 2 – Accuracy

Method f value

MDF 0.50001
IDF 0.49999
AAO 0.49957
CSSO 0.50992
BLISS 0.50105
CO 0.49223
AMAS3 0.50001

Table 11.7: Classification by criteria (based on [PLB04])

Accuracy Efficiency Transparency Simplicity Portability

best MDF IDF AMAS MDF AMAS
AMAS BLISS, AMAS MDF IDF, AMAS CO

IDF IDF CSSO
BLISS CSSO CO CO BLISS

CO CO CSSO CSSO IDF
worst CSSO MDF BLISS BLISS MDF

In regard of the transparency criterion, we have shown that our approach was modular
and extensible, due to the distribution of roles between the agents and to the explicitly encap-
sulation of mathematical tools (analytical models, external optimizers). We demonstrated
this modularity with the addition of uncertainty propagation mechanisms into the MAS.

In regard of the portability criterion, our method is extremely flexible as it supports
multiple levels of modeling and multiple reformulations of the problem. Consequently the
problem can be “tailored” to fit the existing organizational structure. Contrary to the MDO
methods, our method does not require a central authority as the responsibility to maintaining
consistency is distributed in the system.

166 Tom Jorquera

12 Evaluating Scalability

Performances using

Generated Test Cases

12.1 Generated Problem Graphs

In this section we present some measures we established in regard of the scalability
performances of our MAS. For this part of the experiments we were not concerned with the
optimization performances of the system, but more with its capability to handle large agent
graphs without suffering from performances degradation.

12.1.1 Generating NDMO Agent Graphs

In order to realize our experiments, we required a large number of test cases of several
sizes and comparable complexity. Since such repository of continuous optimization problems
is not readily available, we worked on a way to automatically generate them. To this end, we
took advantage of the fact that, as demonstrated with our NDMO modeling, an optimization
problem can be represented as a graph. Consequently it is possible to use well-known graph
generation techniques and directly generate problem graphs.

We propose a very simple method to generate simple problem graphs. First we use a
graph generation algorithm to generate a directed graph of size n. The nodes of this graph
represent the variables of the problem and the arcs their dependencies. If a node is not the
head of any arc (i.e. there is no arc going to this node), it is a design variable, otherwise it is
an output variable.
The next step is to insert models. As we stated, the optimization problem in itself is of little
importance in this part. Consequently our only requirement for the model is that they must
be able to take an arbitrary number of inputs and produce one output. In our experiments
we used a simple Sum function. For each output variable, we insert a node representing the
model in the graph. The links going to the output variable node are redirected to the model
node, and a link going from the model node to the output node is created.
After this step, criteria are randomly added to variable nodes. In our experiments, we given
a 20% probability of a variable node to be linked to a criterion, with half the chance for the
criterion to be an objective and half the change for it to be a constraint. Once more, in order
to simplify the problem generation, all objectives are about minimizing the variable, and all
constraints are about having the variable higher of equal to zero.

An Adaptive MAS for Self-Organizing Continuous Optimization 167

IV

Evaluating Scalability Performances using Generated Test Cases

The generation method is summarized in 12.1. After all these steps, the graph is a valid
NDMO graph and can be directly transformed into an agent graph.

Algorithm 12.1: Problem graph generation

n← initialization number
G(nodes, arcs)← GraphGenerator(n)
foreach currentNode ∈ G.nodes do

tag(currentNode, “variable”)
enteringArcs← {arc ∈ G.arcs, isHeadO f (arc, currentNode)}
if enteringArcs 6= ∅ then

// currentNode is an output variable
modelNode← new node
tag(modelNode, “model”)
G.add(modelNode)
G.createArcBetween(modelNode, currentNode)
foreach arc ∈ enteringArcs do

tailNode← arc.tail
G.removeArc(arc)
G.createArcBetween(tailNode, modelNode)

end
end

// check for criteria
rand← drawRandomNumber()
if rand ≤ criteriaProba then

critNode← new node
G.createArcBetween(currentNode, critNode)
if rand ≤ drawRandomNumber/2 then

tag(critNode, “objective”)
else

tag(critNode, “constraint”)
end

end
end

It must be noted that the final size of problems generated by this algorithm is not fixed,
and can be significantly larger than the initialization value n. However problems produced
using the same initialization number and the same graph generator are of comparable sizes.

We used graph generators proposed by the GraphStream library 1. On Figure 12.1 some
examples of graphs produced using these generators are visualized using GraphStream
visualization tools. It should be noted that, because of the modifications we apply on the
graph after it is created using the generator, the final agent graph does not necessarily respect
the properties of the initial graph , however we can see on Figure 12.1 that the modifications
we apply do not radically modify the characteristic topologies of the different graph types,
which retain their characteristic topologies.

1http://www.graphstream-project.org/

168 Tom Jorquera

http://www.graphstream-project.org/

12.1. Generated Problem Graphs

IV

(a) Random Euclidean graph example 1. (b) Random Euclidean graph example 2.

(c) Small-World graph example 1. (d) Small-World graph example 2.

Figure 12.1: Examples of graph generation.

12.1.2 Experimental Results

Before discussing the results we obtained, let us add a word of warning concerning
measuring real-time performances of Java applications (Java being the programming lan-
guage used to implement our prototype). The Java Virtual Machine (JVM), which executes
Java programs, applies a lot of complex optimization steps during the execution process.
Consequently making some precise and non-biased measurements can be hazardous.
Regarding our experiments, we tried to mitigate possible bias by taking the two following
precautions:

3 before running the measured experiments, running multiple problems whose results
were discarded, in order to “heat” the JVM and allowing it to apply its optimization
procedures beforehand.

3 running the different experiments multiple times and in different orders, to “spread”

An Adaptive MAS for Self-Organizing Continuous Optimization 169

IV

Evaluating Scalability Performances using Generated Test Cases

x
x xx

xx
x

xx
x

xx x
x

xxx
x

xx

x x
x

xx

500 1000 1500 2000 2500

20
00

0
40

00
0

60
00

0
80

00
0

agents number

to
ta

l t
im

e
(in

 m
s)

(a) Small-World graphs.

xxx x x xx xx x xx
xx

x
xx

xx

x
x

x
x

x
x

500 1500 25000e
+

00
4e

+
06

8e
+

06

agents number
to

ta
l t

im
e

(in
 m

s)
(b) Random Euclidean graphs.

Figure 12.2: Time performances by MAS size.

the benefits of possible optimizations happening at runtime.

We believe that these precautions are sufficient to obtain sufficiently meaningful results.
Nevertheless, the reader should be warned not to consider the presented values as exact
measurements of the system performances.

On Figure 12.2 are presented the results of the execution time of problems of different
sizes. We generated agent graphs of different sizes using both Small-World and Random
Euclidean algorithms. On the figure are presented the median time needed for all the agents
of the problem to execute 800 behavior cycles. Interestingly, while the time performances in
regard of small-world based problems graphs increase linearly with the size of the problems,
the time needed in the case of random problem graphs seems to increase exponentially.

This seemingly poor performance can however easily be explained by looking at Figure
12.3, on which are shown the median degree (that is, the number of arcs entering of exiting a
node) of the nodes in each generated problems. We can see, that, whatever the size of the
problem, the median degree of a node in Small-World problems is mostly constant. However,
in the case of Random Euclidean graphs, the median degree increases linearly with the size
of the problem. Consequently, the exponential increase in time regarding Random Euclidean
graphs can be explained by the conjugated effects of the increase in number of agents and
the increase of the neighborhood size of the agents (whose impact in the behavior algorithm
complexity has been exposed in section 6.3).

In order to corroborate this analysis, we studied the impact increasing the nodes degree
has on the execution time of the MAS. On Figure 12.4, we show the results of another
experiment using agent graphs generated using a Barabasi-Albert generator, which has the
advantage of being able to easily generate graphs with different median degree sizes at the
cost of only a slight increase of node numbers. On the figure is shown the average time
for all the agents to make a behavior cycle in function of the median degree of the agents
(using Barabasi-Albert based graphs of sizes between 510 and 550 nodes). We can see that
the neighborhood size of the agents (the degree of the node) has the predicted effect on the

170 Tom Jorquera

12.1. Generated Problem Graphs

IV

●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●

● ●

●

● ●

●

500 1500 2500

5
10

15
xxxxxxxxx xxxxx xxx xxx xxxxx

nodes number

m
ea

n
de

gr
ee

● random euclidean
small−world

Figure 12.3: Comparison of nodes median degree by graph type.

(a) Barabasi-Albert graph example.

●

●

●

●

●

●

●

●

●

●

●

6 8 10 12 14 16

20
0

30
0

40
0

50
0

60
0

70
0

mean degree

to
ta

l t
im

e
(in

 m
s)

(b) Average time for a step (by median de-
gree).

Figure 12.4: Time performances by node degree.

time needed by the agents to execute their behavior.

12.1.3 Analysis of Performances

Overall, we can conclude by observing these results that the time required for the agents
to make a behavior cycle is not meaningfully impacted by the size of the problem. This
property is an expected benefit of restricting the agents to local perception and decision
process.
The results also shown the impact of increasing the neighborhood size of the agents. The time
increase corresponds to the analysis we made concerning the computational complexity of
the agent behavior (in 6.3). This analysis illustrates once more the importance of maintaining
the behavior of the agents at a local level. Had the agent decision process involved not only

An Adaptive MAS for Self-Organizing Continuous Optimization 171

IV

Evaluating Scalability Performances using Generated Test Cases

its immediate neighbors, but also a large group of agent, the computational cost would have
increased even more sharply with the size of the problem.
As a remark, let us add that our implementation of the agent behavior was far from optimal
from a performances point of view. In order to modify and experiment more easily on the
agents, we voluntary kept separated into distinct modules the different solving mechanisms
of the agents. A more efficient implementation could factor several of the treatments in
order to reduce the computational complexity, obtaining a non-negligible performances
improvement in the process.

12.2 Springs Networks

The automated agents graphs we detailed in the previous sections are useful to study
raw scalability performances on different problem sizes. They are limited, however, by the
fact that the problems they represent are meaningless. Consequently this kind of automated
graphs are not useful to study the performances of the system in regard to the convergence
toward a correct solution.

In this section, we propose a method to automatically generate another kind of problems
graphs. The idea is to use graphs representing springs networks, where the edges linking the
vertices represent springs whose extremities are tied together. Some of the nodes are fixed to
arbitrary positions, while the goal of the problem is to find the position of the free nodes for
which the spring network is stable, that is, where all the forces of the springs connected to a
node are at an equilibrium.
The interest of such problem is that the springs network can be generated using classical
graph generator algorithms, and that there is a unique (as long as at least one node has a
fixed position) and easily verifiable solution.

12.2.1 Representing Springs Networks with NDMO

A major difference with the previous generated problems is that, in the case of the springs
networks, the generated graph does not represent directly the agents graph. We must propose
a NDMO modeling of the springs network in order to be able to apply our method.

The springs networks can be represented in 1, 2 or even more dimensions, each additional
dimension adding a new coordinate for the position of the nodes. Interestingly, each dimen-
sion is independent in the sense that the strengths applied by the springs to the nodes can be
computed independently2. Consequently the agents graph representing a spring network in
n dimensions will be composed of n independent connected components.

We present here the procedure to generate the NDMO graph for springs of one dimension,
which can easily be generalized to n dimensions:

3 First of all the springs network is generated using a given graph generator.
3 Each spring (i.e. the edges of the graph) is given a random force constant. In our

experiments the forces were drawn randomly between 1 and 100.
3 Each node has a random chance of becoming a fixed node (in our experiments this

probability was fixed to 0.3). If the node is fixed, its current coordinate is set as a

2This is only true because we make the simplifying hypothesis that the springs can have a size of zero

172 Tom Jorquera

12.2. Springs Networks

IV

constant value.
3 For each free node, a variable agent is created, representing its coordinate.
3 For each spring end linked to a free node, a model agent is created, representing the

force applied to the node connected at this spring end, based on the spring constant
and the coordinate. The exact computations for calculating the force of a spring on a
linked node n1 is (x2 − x1)× k, where x1, x2 are the coordinates of the nodes linked to
the spring and k is the initial force of the spring. This model takes in input the value
of the variable agents of the linked nodes (if one of the node is fixed, its coordinate is
used as a constant). For each model agent, an output agent is created representing the
output value of the model.

3 For each variable agent, a model agent is created, representing the sum of the spring
strengths applied to the node. This model agent takes in input the output agents
representing the strengths applied by the linked springs.

3 For each of these model agents, an output agent is created. To this output agent is
linked a constraint agent representing the constraint that the value of this output must
be equal to 0 when the springs strengths are at equilibrium.

The generation procedure is synthesized in algorithm 12.2.

An example of transformation is presented on Figure 12.5. On Figure 12.5a is shown a
simple springs network with a fixed node A and two free nodes B and C. The nodes are
linked by edges 1 and 2. The corresponding agents graph (for one dimension) is shown on
Figure 12.5b.
Notice how, since the node A is fixed, the model f orce1,B only takes the coordinate of B in
input. It can also be seen that, since B is linked to two springs, the model sumB, representing
the sum of strengths applied to B, takes two values as inputs while, since C is linked to only
one spring, sumC only takes one input.

12.2.2 Springs Networks Experiments

In this section we study the impact of the problem size on the convergence speed of the
system. To this end we created 2D springs networks generated with the previously detailed
procedure, using Small-World graph generators to obtain graphs of different sizes. In each
instance we executed the system until it found the correct solution (i.e. the positions of the
nodes for which the system is at equilibrium). On Figure 12.6 is shown the result of our
experiments. Each dot corresponds to a problem instance, with the agents number and
the number of evaluations required to find the correct solution. We also show the linear
regression trend line corresponding to the data set as a red dotted line.

We can see that, while the number of evaluations can vary greatly for two instances of
similar sizes, the number of agents has a relatively low impact on the convergence time of
the system. These two observations are consistent with our previous analysis, confirming
that the convergence is greatly impacted by the topology of the problem, but that the system
is able to scale with the size of the problem.

An Adaptive MAS for Self-Organizing Continuous Optimization 173

IV

Evaluating Scalability Performances using Generated Test Cases

Algorithm 12.2: Springs network problem generation

n← initialization number
G(nodes, edges)← GraphGenerator(n)
foreach e ∈ G.edges do

e.initForce← random(1, 100)
end
foreach ni ∈ G.nodes do

rand← random(0, 1)
if rand ≤ 0.3 then

// fixed node
tag(ni, “fixed”)
// create constant ci
ci ← coordinate of ni

else
// free node
tag(ni, “free”)
xi ← new variable agent

end
end
foreach ei ∈ G.edges do

foreach ni ∈ ei.linked_nodes do
if ei.ni is free then

// create new force model for this free node
f orcei,ni ← new force model agent
link(xni , f orcei,ni)
if ei.nj 6=i is free then

// if the other node is free, add it as input..
link(xnj , f orcei,nj)

else
// ...else add it as constant
addConstant(cnj , f orcei,ni)

end
fi,ni ← new output agent
link(f orcei,ni , fi,ni)

end
end

end
foreach xi ∈ Variable agents do

// create sum of forces model agent
sumi ← new sum model agent
foreach ej ∈ ni.edges do

link(f j, sumi)
end
si ← new output agent
link(sumi, si)
// create constraint
ci ← new constraint agent
link(si, ci)

end

174 Tom Jorquera

12.2. Springs Networks

IV

A

B

C

1

2

(a) Spring network.

f1,B

xCxB

force1,B force2,B

f2,B

sB = 0

sumB sumC

sB

sC = 0

sC

force2,C

f2,C

(b) Corresponding agents graph (for one di-
mension).

Figure 12.5: Example of springs network transformation.

x
x

x

x x

x

x

x

x

xx

xx

x

x x

x

x
x

x
x

x xxx
x

x

x

xx

x

x

x
x

x
x x

x

x

x

x

x

x

x

x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x
x

x

x

x

x

x x
x

x
x

x

x

x

200 400 600 800

0
10

0
20

0
30

0
40

0

agents number

ev
al

ua
tio

ns
 n

um
be

r

Figure 12.6: Number of evaluations required by agents number.

An Adaptive MAS for Self-Organizing Continuous Optimization 175

IV

Evaluating Scalability Performances using Generated Test Cases

Analysis of Experiments and Future Works

In this part we presented several of the experiments we did on our system. These
experiments show the validity of our agents behaviors on classical optimization problems,
as well as the good performances of our system compared to other complex problems
optimization methods. We also demonstrated the adaptation capabilities of our system, as
well as its extensibility using uncertainties.
Using automatically generated problems, we were able to study the scalability properties
of our system, and the impact of various criteria on its performances. The observations we
made were coherent with our analysis of the agents behaviors.

Of course, the results presented in this part can only show a limited view of our system.
For this reason, we continue our experiments in the different categories of test cases we have
presented.
New academics test cases are experimented upon in order to detect potential new NCSs. In
the context of the ID4CS project, we are currently in a validation phase using real-world large
optimization problems, provided by our industrial partners (such as the one illustrated on
Figure 12.7).
We also continue to work on new ways to experiments on optimization under uncertainties
using different optimization schemes. Simultaneously, we continue our comparison work by
applying our system on additional benchmark test cases.
At last, we have seen that the scalability properties of the system are influenced by the
topology of the agents graph. For this reason we pursue our scalability experiments on
generated test cases, using addition graph generation algorithms in order to study more in
depth the effects of the different criteria.

Figure 12.7: Example of ID4CS test case validation.

176 Tom Jorquera

Conclusion and Perspectives

In this thesis we identified a severe limitation of current continuous optimization methods
regarding the handling of complex continuation problem. Problems of this category are
usually too complex to be solved by classical optimization methods because of multiple
factors: the interdependencies of their components, their heavy computational cost, their
nonlinearities etc. This limitation has been the motivation to propose new specific methods
which divide the problem into several disciplines and distribute the optimization process
using discipline-level optimizers. However these methods are often difficult to put in practice
and cumbersome, not suiting the need of a flexible and iterative process often associated
with such problems.

Thesis Contributions to Continuous Optimization

This thesis proposes a new approach for solving complex continuous problems using
an adaptive multi-agent system. This system, designed following the Adaptive Multi-Agent
Systems theory, proposes a decentralized way to automatically distribute the optimization
process among the agents, and is able not only to solve large-scale complex problems, but
also to adapt to changes made by the user during optimization.
The scalability of our approach is made possible by the fact that the agents keep a local view
of the system. The system adapts to changes by propagating them from neighbor to neighbor,
enabling the interactive co-design of the solution.

This system is built upon a general continuous problem modeling we named Natural
Domain Modeling for Optimization, which transform the optimization problem into an
entities graph. This transformation does not require any simplification, modification or
reformulation of the original problem and is fully automatic.

Following the AMAS theory, we kept the agent perceptions and capabilities at a local
level, allowing them to communicate and interact only with their immediate neighbors.
Doing so, we are able to handle the problems complexity, as each agent keeps a local point-
of-view. The agents are able to use external optimization tools (or can alternatively use
local approximation techniques) to solve their local optimization problems. This local opti-
mization behavior, along with the message-based global consistency, enables a nominal
distributed optimization process.

We identified several configurations that are susceptible to disturb the good functioning
of our system optimization process, corresponding to Non Cooperative Situations (NCS)

An Adaptive MAS for Self-Organizing Continuous Optimization 177

Conclusion and Perspectives

of the AMAS theory. While these NCS can arise from the interaction of several agents, the
agents had to be able to detect and solve them using only local mechanisms. For each NCS
we proposed local cooperative behaviors for the agents to be able able to cooperatively
solve the situation and restore the correct optimization flow. These cooperative behaviors
use specific mechanisms and measures in order to correctly identify the NCS and take the
adequate corrective action.

We proved the modularity of our design by showing how our system could be modified
to handle additional concerns. To illustrate this, we integrated in the agent mechanisms
for managing the uncertainties propagation, effectively allowing the system to realize opti-
mization under uncertainties.

At last, we validated our approach on several test cases. We also integrated our system
into a prototype in the context of the ID4CS project funded by the French National Research
Agency, prototype currently tested by our industrial parters Airbus and Snecma.

Thesis Contribution to Multi-Agent Systems

We already introduced how our identification of specific NCS led to the development
of specific agent mechanisms in order for the system to maintain a correct behavior, such
as cooperative trajectories, cycle solving etc. Based on these NCS and solving mechanisms,
we proposed more general Collective Problem Solving Patterns (CPSP). These CPSP pro-
vide some guidance to the MAS designer regarding some potentially problematic agent
configurations which may happen in the system, and propose some solving mechanisms
to handle these situations. We illustrated these CPSP with blueprints summarizing the
configuration and mechanisms involved.
This work contributes to the ongoing effort of creating general tools for the design of AMAS
in the context of problem solving, regrouped under the name AMAS4Opt (Adaptive Multi-
Agents Systems for Optimization).

Using the Make Agents Yourself framework, we proposed a modular agent architecture
adapted to the modeling of hierarchical AMAS agent roles, based on reusable “building
blocks”. This architecture use a composition of stackable “skills” components, which allows
for an efficient implementation of the handling of the different NCS by the agents.
This architecture can be used by the MAS designer as a base to design his own agents, using
existing components, and contribute to the effort of providing tools for MAS engineering.

We proposed a general graph representation of continuous optimization problems,
which can be re-used by MAS designers as a common base to propose other MAS-based
approaches for continuous optimization. Using this common representation, such methods
will be easier to compare in terms of solving mechanisms and performances.

178 Tom Jorquera

Conclusion and Perspectives

Scientific Perspectives

Perspectives on MAS for Continuous Optimization

In regard of continuous optimization, our system could be enhanced with several addi-
tional capabilities. Currently, our system concentrates on providing one optimal solution. An
obvious improvement would be to modify the agents to explore the Pareto front and provide
several optimal solutions to the problem. A possible lead would be to modify the objective
agents handling of criticality, in order to modulate the weight associated with each objective.

Another possible improvement for designers would be to integrate multi-fidelity models
in the system. Multi-fidelity model is a technique to reduce the computational cost of
optimization, using several versions of the same model with different computational costs.
The low-cost, imprecise models are used at the start of the optimization process, while the
high-cost, high-fidelity models are used when the system is starting to converge, in order to
improve the precision of the solution. A difficulty of such mechanisms is the maintaining of
the consistency between the different levels. This kind of mechanisms could be implemented
in our system through the behavior of model agents.

The use of external optimizers could be improved by providing automated optimizer
selection mechanisms, in order for the agents to be able to select the most appropriate opti-
mizer, or even change of optimization method during the solving process. Such improvement
would possibility require the creation of an optimization ontology in order to characterize
the different optimizers.

One could imagine to add self-organizing capabilities to the system, in order to automat-
ically compose the agent graph representing an optimization problem. Such functionality
could be used, for example, to provide assistance to the designer during the specification of
the optimization problem.
With such mechanisms, the user would only have to define a base of elements (variables,
models, criteria etc.) and the system would be able to automatically assemble the elements
into an agent graph, possibly creating (or requesting to the user) new elements as needed.
Such functioning would be made possible more easily by the fact that the NDMO formalism
does not necessitate any specific formulation to be valid.

Perspectives on the Design of MAS and CPSP

Concerning the design of MAS, we believe that both researchers and engineers would
benefit greatly from the creation of an agent patterns repository. We intend to provide a
more detailed and standardized description of the Collective Problem Solving Patterns we
identified, with the goal of having a self-sufficient specification document.

An obvious continuation of this work is the identification of new CPSP, either concerning
configurations we failed to identify in our application, or with configuration which appear
in other application domains. Another possibility concerns the development of alternate
handling mechanisms for existing CPSP.

An interesting addition to the CPSP would be to provide an implementation of specialized
components which only need to be completed by providing specific functions based on the

An Adaptive MAS for Self-Organizing Continuous Optimization 179

Conclusion and Perspectives

application domain. To which extend such partial instantiation of the CPSP is possible is an
open question at this moment.

Perspectives on the AMAS Theory

At last, we would like to finish by discussing some interesting observations concerning
the AMAS theory in itself and the identification of NCS. Prior works using the AMAS theory
concentrated on the identification of NCS at a given moment. The detection of the NCS was
usually done immediately by the agents, and the corrective actions were relatively simple
and direct.

Most of the NCS we identified were quite different in their functioning. These NCS
not only require the agents to cooperate over several iterations to be solved, but their iden-
tification itself requires the agents to take additional measures. Moreover, some of the
configurations we identified are not systematically problematic in themselves, but only poten-
tially problematic depending on some of the parameters (naturally converging cycles, hidden
dependencies with adequate influences etc.). The common point among these situations is
how they are related to the dynamics of the system, about its evolution toward one direction
or another.

This observation leads to the question of whether a possible distinction could be made
between spatial NCS, corresponding to the interactions between agents at a given instant,
and temporal NCS, corresponding to the evolution of an agent over time. If such distinction
proved to be relevant, it could lead to new insights on the design of AMAS-based systems,
and possibly on the AMAS theory in itself.

180 Tom Jorquera

An Adaptive Multi-Agent System for
Self-Organizing Continuous Optimization

Appendix

An Adaptive MAS for Self-Organizing Continuous Optimization 181

Author's Bibliography

International Conferences and Workshops with
Referenced Proceedings

Tom Jorquera et al. “A Natural Formalism and a Multi-Agent Algorithm for Integrative
Multidisciplinary Design Optimization”. In: IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT), Atlanta, USA, 17/11/2013-20/11/2013. 2013.

Tom Jorquera et al. “A Self-Adaptive Multi-Agent Algorithm for Interactive Continuous
Optimization”. In: 5th International Conference on Computational Collective Intelligence Tech-
nologies and Applications (ICCCI), Craiova, Roumanie, 11/09/2013-13/09/2013. 2013.

International Conferences and Workshops without
Referenced Proceedings

Tom Jorquera et al. “Relevance of an Adaptive Multi-Agent System Approach for Integrative
Multidisciplinary Design Optimization”. In: European Workshop on Multi-Agent Systems
(EUMAS 2012), Dublin, Ireland, 18/12/2012-19/12/2012. 2012.

Tom Jorquera et al. “A Natural Formalism and a Multi-Agent Algorithm for Integrative
Multidisciplinary Design Optimization”. In: International Workshop on Optimisation in
Multi-Agent Systems at the Twelfth International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS), Saint Paul, Minnesota, USA, 06/05/2013-10/05/2013. 2013.

Tom Jorquera et al. “Experimenting on a Novel Approach to MDO using an Adaptive Multi-
Agent System”. In: 10th World Congress on Structural and Multidisciplinary Optimization
(WCSMO), Orlando, Florida, USA, 19/05/2013-24/05/2013. 2013.

National Conferences and Workshops without
Referenced Proceedings

Tom Jorquera, Jean-Pierre Georgé, and Christine Régis. “Self-Organizing Multi-Agent System
For MDO”. In: 12e Congrès de la Société Francaise de Recherche Opérationnelle et d’Aide à la
Decision (ROADEF’11), Saint-Etienne, 02/03/2011-04/03/2011. 2011.

An Adaptive MAS for Self-Organizing Continuous Optimization 183

Author's Bibliography

Demos and Posters

Tom Jorquera, Jean-Pierre Georgé, and Christine Régis. “An Adaptive Multi-Agent System
for Integrative Multidisciplinary Design Optimization (demo and 2-pages paper)”. In:
IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2012),
Lyon - France, 10/09/2012-14/09/2012. 2012.

Tom Jorquera et al. “An Adaptive Multi-Agent System for Multidisciplinary Integrative De-
sign Optimization (Poster)”. In: International Conference on Agents and Artificial Intelligence
(ICAART) 2013, Barcelona, Spain, 15/02/2013-18/02/2013. 2013.

184 Tom Jorquera

Bibliography

[AA91] American Institute of Aeronautics and Astronautics. Current State of the Art
on Multidisciplinary Design Optimization (MDO). General Publication Series.
American Institute of Aeronautics & Astronautics, 1991. URL: http://books.
google.fr/books?id=rbgkAQAAIAAJ.

[Ada+11] Emmanuel Adam et al. “Agents Tasks Reallocation for Collaborative Urban
Supply Chain Management”. In: Holonic and Multi-Agent Systems for Manufac-
turing. Ed. by Vladimír Mařík, Pavel Vrba, and Paulo Leitão. Vol. 6867. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 215–224.
ISBN: 978-3-642-23180-3. DOI: 10.1007/978-3-642-23181-0_21. URL:
http://dx.doi.org/10.1007/978-3-642-23181-0_21.

[AL02] N.M. Alexandrov and R.M. Lewis. “Analytical and computational aspects of
collaborative optimization for multidisciplinary design”. In: AIAA journal 40.2
(2002), pp. 301–309.

[All+06] Janet K Allen et al. “Robust design for multiscale and multidisciplinary appli-
cations”. In: Journal of Mechanical Design 128 (2006), p. 832.

[AT10] Anne Auger and Olivier Teytaud. “Continuous Lunches Are Free Plus the
Design of Optimal Optimization Algorithms”. English. In: Algorithmica 57 (1
2010), pp. 121–146. ISSN: 0178-4617. DOI: 10.1007/s00453-008-9244-5.
URL: http://dx.doi.org/10.1007/s00453-008-9244-5.

[Aud+00] C. Audet et al. “A branch and cut algorithm for nonconvex quadratically con-
strained quadratic programming”. In: Mathematical Programming 87.1 (2000),
pp. 131–152.

[BBG09] Noélie Bonjean, Carole Bernon, and Pierre Glize. “Engineering Development of
Agents using the Cooperative Behaviour of their Components”. In: MAS&S@
MALLOW 9 (2009), p. 107.

[Ber+03] Carole Bernon et al. “Adelfe: A methodology for adaptive multi-agent systems
engineering”. In: Engineering Societies in the Agents World III. Springer, 2003,
pp. 156–169.

[Ber+05] Carole Bernon et al. “Engineering Adaptive Multi-Agent Systems: The ADELFE
Methodology ”. In: Agent-Oriented Methodologies. Ed. by Brian Henderson-
Sellers and Paolo Giorgini. Vol. ISBN1-59140-581-5. NY, USA: Idea Group Pub,
2005, pp. 172–202.

An Adaptive MAS for Self-Organizing Continuous Optimization 185

http://books.google.fr/books?id=rbgkAQAAIAAJ
http://books.google.fr/books?id=rbgkAQAAIAAJ
http://dx.doi.org/10.1007/978-3-642-23181-0_21
http://dx.doi.org/10.1007/978-3-642-23181-0_21
http://dx.doi.org/10.1007/s00453-008-9244-5
http://dx.doi.org/10.1007/s00453-008-9244-5

Bibliography

[BT95] Paul T Boggs and Jon W Tolle. “Sequential quadratic programming”. In: Acta
numerica 4.1 (1995), pp. 1–51.

[Car10] Peter Cariani. “On the Importance of Being Emergent. Extended Review of
“Emergence and Embodiment: New Essays on Second-Order Systems Theory”
edited by Bruce Clark and Mark B. N. Hanson.Duke University Press, Durham,
2009.” In: Constructivist Foundations 5.2 (2010), pp. 86–91. URL: http://www.
univie.ac.at/constructivism/journal/5/2/086.cariani.

[CC57] Abraham Charnes and William W Cooper. “Management models and indus-
trial applications of linear programming”. In: Management Science 4.1 (1957),
pp. 38–91.

[CK03] D. Corne and J. Knowles. “Some multiobjective optimizers are better than
others”. In: Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on. Vol. 4.
2003, 2506 –2512 Vol.4. DOI: 10.1109/CEC.2003.1299403.

[CK07] David W Corne and Joshua D Knowles. “Techniques for highly multiobjective
optimisation: some nondominated points are better than others”. In: Proceed-
ings of the 9th annual conference on Genetic and evolutionary computation. ACM.
2007, pp. 773–780.

[CM09] Ian R. Chittick and Joaquim R. R. A. Martins. “An asymmetric suboptimization
approach to aerostructural optimization”. In: Optimization and Engineering 10
(1 2009), pp. 133–152. DOI: 10.1007/s11081-008-9046-2.

[Cra+94] Evin J Cramer et al. “Problem formulation for multidisciplinary optimization”.
In: SIAM Journal on Optimization 4.4 (1994), pp. 754–776.

[Dan98] G. Dantzig. Linear programming and extensions. Princeton university press, 1998.

[DC05] Xiaoping Du and Wei Chen. “Collaborative reliability analysis under the frame-
work of multidisciplinary systems design”. In: Optimization and Engineering 6.1
(2005), pp. 63–84.

[DMSGK11] Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageor-
gos. “Self-organising Software: From Natural to Artificial Adaptation”. In:
(2011).

[DS83] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics, 1983. ISBN: 9780898713640. URL: http://books.
google.fr/books?id=RtxcWd0eBD0C.

[Eng00] Thomas M. English. “Practical Implications of New Results in Conservation of
Optimizer Performance”. English. In: Parallel Problem Solving from Nature PPSN
VI. Ed. by Marc Schoenauer et al. Vol. 1917. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2000, pp. 69–78. ISBN: 978-3-540-41056-0. DOI:
10.1007/3-540-45356-3_7. URL: http://dx.doi.org/10.1007/3-
540-45356-3_7.

[GCG99] Marie-Pierre Gleizes, Valérie Camps, and Pierre Glize. “A theory of emergent
computation based on cooperative self-organization for adaptive artificial
systems”. In: Fourth European Congress of Systems Science. 1999.

186 Tom Jorquera

http://www.univie.ac.at/constructivism/journal/5/2/086.cariani
http://www.univie.ac.at/constructivism/journal/5/2/086.cariani
http://dx.doi.org/10.1109/CEC.2003.1299403
http://dx.doi.org/10.1007/s11081-008-9046-2
http://books.google.fr/books?id=RtxcWd0eBD0C
http://books.google.fr/books?id=RtxcWd0eBD0C
http://dx.doi.org/10.1007/3-540-45356-3_7
http://dx.doi.org/10.1007/3-540-45356-3_7
http://dx.doi.org/10.1007/3-540-45356-3_7

Bibliography

[Gli01] Pierre Glize. “L’adaptation des systèmes à fonctionnalité émergente par auto-
organisation coopérative”. In: Hdr, Université Paul Sabatier, Toulouse III (2001).

[Glo89] Fred Glover. “Tabu search—part I”. In: ORSA Journal on computing 1.3 (1989),
pp. 190–206.

[Gu+00] Xiaoyu Gu et al. “Worst case propagated uncertainty of multidisciplinary
systems in robust design optimization”. In: Structural and Multidisciplinary
Optimization 20.3 (2000), pp. 190–213.

[Haf85] Raphael T Haftka. “Simultaneous analysis and design”. In: AIAA journal 23.7
(1985), pp. 1099–1103.

[Hen08] James Hendler. “Avoiding Another AI Winter”. In: IEEE Intelligent Systems 23.2
(2008), pp. 2–4. ISSN: 1541-1672. DOI: http://doi.ieeecomputersociety.
org/10.1109/MIS.2008.20.

[HLW71] Yacov Haimes, Leon Lasdon, and Davis. Wismer. “On a Bicriterion Formula-
tion of the Problems of Integrated System Identification and System Optimiza-
tion”. In: Systems, Man and Cybernetics, IEEE Transactions on SMC-1.3 (1971),
pp. 296–297. ISSN: 0018-9472. DOI: 10.1109/TSMC.1971.4308298.

[Hol92] John H Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control and artificial intelligence. MIT press,
1992.

[HW05] Raphael T. Haftka and Layne T. Watson. “Multidisciplinary Design Opti-
mization with Quasiseparable Subsystems”. English. In: Optimization and
Engineering 6 (1 2005), pp. 9–20. ISSN: 1389-4420. DOI: 10.1023/B:OPTE.
0000048534.58121.93. URL: http://dx.doi.org/10.1023/B%
3AOPTE.0000048534.58121.93.

[Jac88] Van Jacobson. “Congestion avoidance and control”. In: ACM SIGCOMM Com-
puter Communication Review. Vol. 18. 4. ACM. 1988, pp. 314–329.

[JJSRRS98] Sobieszczanski J., Agte J. S., and Jr R. R. Sandusky. Bi-Level Integrated System
Synthesis. Tech. rep. 1998.

[Kad11] E. Kaddoum. “Optimization under Constraints of Distributed Complex Prob-
lems using Cooperative Self-Organization”. PhD thesis. Université de Toulouse,
Toulouse, France, 2011. URL: ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/
RAPPORTS/TheseElsyKaddoum_2011.pdf.

[Kar84] N. Karmarkar. “A new polynomial-time algorithm for linear programming”.
In: Proceedings of the sixteenth annual ACM symposium on Theory of computing.
STOC ’84. New York, NY, USA: ACM, 1984, pp. 302–311. ISBN: 0-89791-133-4.
DOI: 10.1145/800057.808695. URL: http://doi.acm.org/10.1145/
800057.808695.

[KE95] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In: Neu-
ral Networks, 1995. Proceedings., IEEE International Conference on. Vol. 4. IEEE.
1995, pp. 1942–1948.

[KJV83] Scott Kirkpatrick, D. Gelatt Jr., and Mario P Vecchi. “Optimization by simmu-
lated annealing”. In: science 220.4598 (1983), pp. 671–680.

An Adaptive MAS for Self-Organizing Continuous Optimization 187

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MIS.2008.20
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MIS.2008.20
http://dx.doi.org/10.1109/TSMC.1971.4308298
http://dx.doi.org/10.1023/B:OPTE.0000048534.58121.93
http://dx.doi.org/10.1023/B:OPTE.0000048534.58121.93
http://dx.doi.org/10.1023/B%3AOPTE.0000048534.58121.93
http://dx.doi.org/10.1023/B%3AOPTE.0000048534.58121.93
ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/RAPPORTS/TheseElsyKaddoum_2011.pdf
ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/RAPPORTS/TheseElsyKaddoum_2011.pdf
http://dx.doi.org/10.1145/800057.808695
http://doi.acm.org/10.1145/800057.808695
http://doi.acm.org/10.1145/800057.808695

Bibliography

[KL95] Andrew Kusiak and Nick Larson. “Decomposition and representation meth-
ods in mechanical design”. In: Journal of Mechanical Design 117 (1995), p. 17.

[Koc+99] Patrick N Koch et al. “Statistical approximations for multidisciplinary design
optimization: the problem of size”. In: Journal of Aircraft 36.1 (1999), pp. 275–
286.

[Kro+94a] Ilan M. Kroo et al. “Multidisciplinary Optimization Methods for Aircraft
Preliminary Design”. In: AIAA 5th Symposium on Multidisciplinary Analysis and
Optimization (1994). AIAA 1994-4325.

[Kro+94b] Ilan M. Kroo et al. “Multidisciplinary Optimization Methods for Aircraft
Preliminary Design”. In: AIAA 5th Symposium on Multidisciplinary Analysis and
Optimization (1994). AIAA 1994-4325.

[Ks11] Zhang Ke-shi. “Concurrent Subspace Optimization for Aircraft System De-
sign”. In: Aeronautics and Astronautics. Ed. by Max Mulder. InTech, 2011.

[KT51] Harold W Kuhn and Albert W Tucker. “Nonlinear programming”. In: Proceed-
ings of the second Berkeley symposium on mathematical statistics and probability.
Vol. 5. California. 1951.

[KX08] Vladik Kreinovich and Gang Xiang. “Fast Algorithms for Computing Statistics
under Interval Uncertainty: An Overview”. In: Interval / Probabilistic Uncer-
tainty and Non-Classical Logics. Ed. by Van-Nam Huynh et al. Vol. 46. Ad-
vances in Soft Computing. Springer Berlin Heidelberg, 2008, pp. 19–31. ISBN:
978-3-540-77663-5. DOI: 10.1007/978-3-540-77664-2_3. URL: http:
//dx.doi.org/10.1007/978-3-540-77664-2_3.

[LA08] Mian Li and Shapour Azarm. “Multiobjective collaborative robust optimiza-
tion with interval uncertainty and interdisciplinary uncertainty propagation”.
In: Journal of Mechanical Design 130 (2008), p. 081402.

[LCG11] S. Lemouzy, V. Camps, and P. Glize. “Principles and Properties of a MAS
Learning Algorithm: A Comparison with Standard Learning Algorithms Ap-
plied to Implicit Feedback Assessment”. In: Web Intelligence and Intelligent
Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on.
Vol. 2. 2011. DOI: 10.1109/WI-IAT.2011.190.

[Lep+10] Julien Lepagnot et al. “A new multiagent algorithm for dynamic continu-
ous optimization”. In: International Journal of Applied Metaheuristic Computing
(IJAMC) 1.1 (2010), pp. 16–38.

[Lev44] Kenneth Levenberg. “A method for the solution of certain non-linear problems
in least squares”. In: Quarterly Journal of Applied Mathmatics II.2 (1944), pp. 164–
168.

[Liu+06] Huibin Liu et al. “Probabilistic analytical target cascading: a moment matching
formulation for multilevel optimization under uncertainty”. In: Journal of
Mechanical Design 128 (2006), p. 991.

[MA04] R Timothy Marler and Jasbir S Arora. “Survey of multi-objective optimization
methods for engineering”. In: Structural and multidisciplinary optimization 26.6
(2004), pp. 369–395.

188 Tom Jorquera

http://dx.doi.org/10.1007/978-3-540-77664-2_3
http://dx.doi.org/10.1007/978-3-540-77664-2_3
http://dx.doi.org/10.1007/978-3-540-77664-2_3
http://dx.doi.org/10.1109/WI-IAT.2011.190

Bibliography

[MA10] R.Timothy Marler and JasbirS. Arora. “The weighted sum method for multi-
objective optimization: new insights”. English. In: Structural and Multidisci-
plinary Optimization 41.6 (2010), pp. 853–862. ISSN: 1615-147X. DOI: 10.1007/
s00158-009-0460-7. URL: http://dx.doi.org/10.1007/s00158-
009-0460-7.

[Mar63] Donald W. Marquardt. “An Algorithm for Least-Squares Estimation of Non-
linear Parameters”. In: SIAM Journal on Applied Mathematics 11.2 (1963), pp. 431–
441. URL: http://scitation.aip.org/getabs/servlet/GetabsServlet?
prog=normal\&id=SMJMAP000011000002000431000001\&idtype=

cvips\&gifs=yes.

[Mas51] Frank J Jr Massey. “The Kolmogorov-Smirnov test for goodness of fit”. In:
Journal of the American Statistical Association 46.253 (1951), pp. 68–78. URL:
http://www.jstor.org/stable/2280095.

[McC+06] John McCarthy et al. “A proposal for the dartmouth summer research project
on artificial intelligence, august 31, 1955”. In: AI Magazine 27.4 (2006), p. 12.

[Mic+07] Maged Michael et al. “Scale-up x scale-out: A case study using nutch/lucene”.
In: Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE Inter-
national. IEEE. 2007, pp. 1–8.

[ML04] Roger Mailler and Victor Lesser. “Solving Distributed Constraint Optimization
Problems Using Cooperative Mediation”. In: Proceedings of Third International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004).
IEEE Computer Society, 2004, pp. 438–445. URL: http://mas.cs.umass.
edu/paper/355.

[ML12] Joaquim R. R. A. Martins and Andrew B. Lambe. “Multidisciplinary design
optimization: A Survey of architectures”. In: AIAA Journal (2012). (In press).

[Mod+06] Pragnesh Jay Modi et al. “ADOPT: Asynchronous Distributed Constraint
Optimization with Quality Guarantees”. In: ARTIFICIAL INTELLIGENCE 161
(2006), pp. 149–180.

[Nai+92] Vijayan N Nair et al. “Taguchi’s parameter design: a panel discussion”. In:
Technometrics 34.2 (1992), pp. 127–161.

[Nik+04] Efstratios Nikolaidis et al. “Comparison of Probability and Possibility for
Design Against Catastrophic Failure Under Uncertainty”. In: Journal of Me-
chanical Design 126.3 (2004), pp. 386–394. DOI: 10.1115/1.1701878. URL:
http://link.aip.org/link/?JMD/126/386/1.

[NM65] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”.
In: The Computer Journal 7.4 (1965), pp. 308–313. DOI: 10.1093/comjnl/7.
4.308. eprint: http://comjnl.oxfordjournals.org/content/7/4/
308.full.pdf+html. URL: http://comjnl.oxfordjournals.org/
content/7/4/308.abstract.

[NMRM00] Alexandrov Natalia M. and Lewis Robert Michael. Analytical and Computational
Aspects of Collaborative Optimization. Tech. rep. 2000.

An Adaptive MAS for Self-Organizing Continuous Optimization 189

http://dx.doi.org/10.1007/s00158-009-0460-7
http://dx.doi.org/10.1007/s00158-009-0460-7
http://dx.doi.org/10.1007/s00158-009-0460-7
http://dx.doi.org/10.1007/s00158-009-0460-7
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=SMJMAP000011000002000431000001\&idtype=cvips\&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=SMJMAP000011000002000431000001\&idtype=cvips\&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal\&id=SMJMAP000011000002000431000001\&idtype=cvips\&gifs=yes
http://www.jstor.org/stable/2280095
http://mas.cs.umass.edu/paper/355
http://mas.cs.umass.edu/paper/355
http://dx.doi.org/10.1115/1.1701878
http://link.aip.org/link/?JMD/126/386/1
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1093/comjnl/7.4.308
http://comjnl.oxfordjournals.org/content/7/4/308.full.pdf+html
http://comjnl.oxfordjournals.org/content/7/4/308.full.pdf+html
http://comjnl.oxfordjournals.org/content/7/4/308.abstract
http://comjnl.oxfordjournals.org/content/7/4/308.abstract

Bibliography

[Noe12] Victor Noel. “Component-based Software Architectures and Multi-Agent Sys-
tems: Mutual and Complementary Contributions for Supporting Software
Development”. anglais. Thèse de doctorat. Toulouse, France: Université de
Toulouse, 2012. URL: http://www.irit.fr/publis/SMAC/DOCUMENTS/
RAPPORTS/TheseVictorNoel-0712.pdf.

[OJ96] Greg MP O’Hare and Nick Jennings. Foundations of distributed artificial intelli-
gence. Vol. 9. Wiley. com, 1996.

[Osy84] Andrzej Osyczka. “Multicriterion optimization in engineering with FORTRAN
programs.” In: JOHN WILEY & SONS, INC., 605 THIRD AVE., NEW YORK,
NY 10158, USA, 1984, 200 (1984).

[PG04] Gauthier Picard and Marie-Pierre Gleizes. “The ADELFE Methodology ”.
In: Methodologies and Software Engineering for Agent Systems. Ed. by Federico
Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli. Klüwer Academic
Press, 2004, pp. 157–176.

[PLB04] Ruben E Perez, Hugh HT Liu, and Kamran Behdinan. “Evaluation of mul-
tidisciplinary optimization approaches for aircraft conceptual design”. In:
Proceedings of the 10th AIAA/ISSMO multidisciplinary analysis and optimization
conference, AIAA paper. Vol. 4537. 2004.

[PPS72] Vilfredo Pareto, . Page Alfred N., and Ann S. Schwier. Manual of political
economy / by Vilfredo Pareto ; translated by Ann S. Schwier and Alfred N. Page.
English. Macmillan London, 1972, xii,504p : ISBN: 0333135458.

[PW64] C. Van de Panne and A. Whinston. “Simplicial methods for quadratic pro-
gramming”. In: Naval Research Logistics Quarterly 11.3-4 (1964), pp. 273–302.

[Qui00] Joël Quinqueton. “Emergent Problem Solving in Multi-Agent Systems”. In:
Zeszyty Naukowe 10 (2000), pp. 147–163.

[RC04] Christian P Robert and George Casella. Monte Carlo statistical methods. Vol. 319.
Citeseer, 2004.

[Roc+13] Robin Roche et al. “Multi-Agent Technology for Power System Control”. In:
Power Electronics for Renewable and Distributed Energy Systems. Ed. by Sudipta
Chakraborty, Marcelo g. Sim
oes, and William e. Kramer. Springer, Apr. 2013. Chap. 15, pp. 567–609. ISBN:
978-1-4471-5103-6. DOI: 10.1007/978-1-4471-5104-3{\string_}15.
URL: http://link.springer.com/chapter/10.1007/978-1-4471-
5104-3_15#.

[Ros60] H. H. Rosenbrock. “An Automatic Method for Finding the Greatest or Least
Value of a Function”. In: The Computer Journal 3.3 (1960), pp. 175–184. DOI:
10.1093/comjnl/3.3.175. eprint: http://comjnl.oxfordjournals.
org/content/3/3/175.full.pdf+html. URL: http://comjnl.
oxfordjournals.org/content/3/3/175.abstract.

[Rou08] Sylvain Rougemaille. “Ingénierie des systèmes multi-agents adaptatifs dirigée
par les modèles”. français. Thèse de doctorat. Toulouse, France: Université
Paul Sabatier, 2008. URL: ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/
RAPPORTS/TheseSRougemaille_1008.pdf.

190 Tom Jorquera

http://www.irit.fr/publis/SMAC/DOCUMENTS/RAPPORTS/TheseVictorNoel-0712.pdf
http://www.irit.fr/publis/SMAC/DOCUMENTS/RAPPORTS/TheseVictorNoel-0712.pdf
http://dx.doi.org/10.1007/978-1-4471-5104-3{\string_}15
http://link.springer.com/chapter/10.1007/978-1-4471-5104-3_15#
http://link.springer.com/chapter/10.1007/978-1-4471-5104-3_15#
http://dx.doi.org/10.1093/comjnl/3.3.175
http://comjnl.oxfordjournals.org/content/3/3/175.full.pdf+html
http://comjnl.oxfordjournals.org/content/3/3/175.full.pdf+html
http://comjnl.oxfordjournals.org/content/3/3/175.abstract
http://comjnl.oxfordjournals.org/content/3/3/175.abstract
ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/RAPPORTS/TheseSRougemaille_1008.pdf
ftp://ftp.irit.fr/IRIT/SMAC/DOCUMENTS/RAPPORTS/TheseSRougemaille_1008.pdf

Bibliography

[Sac+89] Jerome Sacks et al. “Design and analysis of computer experiments”. In: Statis-
tical science 4.4 (1989), pp. 409–423.

[SBR96] RS Sellar, SM Batill, and JE Renaud. “Response surface based, concurrent
subspace optimization for multidisciplinary system design”. In: AIAA paper
714 (1996), p. 1996.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. Wiley, 1998.

[SF02] K. Sentz and S. Ferson. Combination of evidence in Dempster-Shafer theory. Cite-
seer, 2002.

[Sha76] Glenn Shafer. A mathematical theory of evidence. Vol. 1. Princeton university
press Princeton, 1976.

[SN08] Dieter Scholz and M Nita. “Preliminary sizing of large propeller driven aero-
planes”. In: Proceedings of the RRD-PAE 2008 Conference, Brno, October 16-17.
DAR Corporation. 2008.

[SP05] Moon-Kyun Shin and Gyung-Jin Park. “Multidisciplinary design optimization
based on independent subspaces”. In: International Journal for Numerical Meth-
ods in Engineering 64.5 (2005), pp. 599–617. ISSN: 1097-0207. DOI: 10.1002/
nme.1380. URL: http://dx.doi.org/10.1002/nme.1380.

[Sta88] Wolfram Stadler. Multicriteria Optimization in Engineering and in the Sciences.
Vol. 37. Springer, 1988.

[Str+09] R. Stranders et al. “Decentralised coordination of continuously valued control
parameters using the max-sum algorithm”. In: Proceedings of The 8th Inter-
national Conference on Autonomous Agents and Multiagent Systems-Volume 1.
International Foundation for Autonomous Agents and Multiagent Systems.
2009, pp. 601–608.

[Tsu92] Kwok-Leung Tsui. “An overview of Taguchi method and newly developed
statistical methods for robust design”. In: Iie Transactions 24.5 (1992), pp. 44–57.

[VFM96] R. Viennet, C. Fonteix, and I. Marc. “Multicriteria optimization using a genetic
algorithm for determining a Pareto set”. In: International Journal of Systems
Science 27.2 (1996), pp. 255–260.

[VRAC11] Meritxell Vinyals, Juan A. Rodríguez-Aguilar, and Jesús Cerquides. “A Survey
on sensor Networks from a Multiagent Perspective”. In: The Computer Journal
54 (2011). In press. Published on-line on February 2010. DOI:10.1093/comjnl/bxq018.,
pp. 455–470.

[Wei99] G. Weiß. Mutiagent Systems: A Modern Approach to Distributed Artificial Intel-
ligence. Intelligent Robotics and Autonomous Agents Series. Mit Press, 1999.
ISBN: 9780262731317. URL: http://books.google.fr/books?id=
JYcznFCN3xcC.

[Wel+06] Jean-baptiste Welcomme et al. “Self-Regulating Multi-Agent System for Multi-
Disciplinary Optimisation Process”. In: European Workshop on Multi-Agent
Systems (EUMAS), Lisbon. Vol. 14. 12. 2006, pp. 2006–15.

[Wil03] Anthony Wilden. System and structure: Essays in communication and exchange.
Psychology Press, 2003.

An Adaptive MAS for Self-Organizing Continuous Optimization 191

http://dx.doi.org/10.1002/nme.1380
http://dx.doi.org/10.1002/nme.1380
http://dx.doi.org/10.1002/nme.1380
http://books.google.fr/books?id=JYcznFCN3xcC
http://books.google.fr/books?id=JYcznFCN3xcC

Bibliography

[WM05] D.H. Wolpert and W.G. Macready. “Coevolutionary free lunches”. In: Evolution-
ary Computation, IEEE Transactions on 9.6 (2005), pp. 721 –735. ISSN: 1089-778X.
DOI: 10.1109/TEVC.2005.856205.

[WM97] D.H. Wolpert and W.G. Macready. “No free lunch theorems for optimization”.
In: Evolutionary Computation, IEEE Transactions on 1.1 (1997), pp. 67 –82. ISSN:
1089-778X. DOI: 10.1109/4235.585893.

[Wol59] P. Wolfe. “The simplex method for quadratic programming”. In: Econometrica:
Journal of the Econometric Society (1959), pp. 382–398.

[WRB97] Brett A Wujek, John E Renaud, and Stephen M Batill. “A concurrent engi-
neering approach for multidisciplinary design in a distributed computing
environment”. In: Multidisciplinary Design Optimization: State-of-the-Art, Pro-
ceedings in Applied Mathematics. Vol. 80. 1997, pp. 189–208.

[Yan12] Xin-She Yang. “Swarm-Based Metaheuristic Algorithms and No-Free-Lunch
Theorems”. In: Theory and New Applications of Swarm Intelligence. Ed. by Rafael
Parpinelli and Heitor S. Lopes. 2012, pp. 1–16. DOI: 10.5772/30852.

[Yok+98] Makoto Yokoo et al. “The distributed constraint satisfaction problem: Formal-
ization and algorithms”. In: Knowledge and Data Engineering, IEEE Transactions
on 10.5 (1998), pp. 673–685.

[Yok01] Makoto Yokoo. Distributed constraint satisfaction: foundations of cooperation in
multi-agent systems. Ed. by O. Etzioni, T. Ishida, and N. Jennings. London, UK,
UK: Springer-Verlag, 2001. ISBN: 3-540-67596-5.

[YSP08] S.I. Yi, J.K. Shin, and G.J. Park. “Comparison of MDO methods with mathemat-
ical examples”. English. In: Structural and Multidisciplinary Optimization 35.5
(2008), pp. 391–402. ISSN: 1615-147X. DOI: 10.1007/s00158-007-0150-2.
URL: http://dx.doi.org/10.1007/s00158-007-0150-2.

[Zad65] Lotfi Asker Zadeh. “Fuzzy sets”. In: Information and control 8.3 (1965), pp. 338–
353.

[Zad78] Lotfi Asker Zadeh. “Fuzzy sets as a basis for a theory of possibility”. In: Fuzzy
sets and systems 1.1 (1978), pp. 3–28.

192 Tom Jorquera

http://dx.doi.org/10.1109/TEVC.2005.856205
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.5772/30852
http://dx.doi.org/10.1007/s00158-007-0150-2
http://dx.doi.org/10.1007/s00158-007-0150-2

List of Figures

1.1 Examples of local and global optima - a and b are global maxima, c is a local
minimum, d is a local maximum and e is the global minimum. 8

1.2 Types of continuous optimization methods. 12
1.3 Convex and concave search spaces (from Oleg Alexandrov). 13
1.4 Illustration of the Nelder-Mead algorithm. 16

2.1 Illustration of the notion of Pareto Front (CC-BY-SA Johann Dréo). 28

3.1 Examples of aeronautics disciplines (source unknown, partially based on the
work of C. W. Miller Dream Airplanes). 31

3.2 MDF method. 34
3.3 IDF method. 35
3.4 AAO method. 35
3.5 CSSO method. 36
3.6 CO method. 36
3.7 BLISS method. 37
3.8 ASO method. 38
3.9 MDOIS method. 38
3.10 QSD method. 39
3.11 Example of robust optimum (a) and non-robust optimum (b). 44

4.1 An example of the DCSP representation. 54
4.2 Illustration of functionally adequate and internal cooperative medium systems. 58
4.3 The conditions for cooperation and corresponding NCS. 59

5.1 Illustration of a Turbofan engine (CC SA-BY K. Aainsqatsi). 67
5.2 Class diagram of MDO problems. 68
5.3 Turbofan problem. 68
5.4 Model agent behavior. 72
5.5 Variable agent behavior: 1. receive request. 2. answer with inform. 73
5.6 Output agent behavior. 73
5.7 Constraint and objective agents behavior. 74
5.8 MAS class diagram. 74

6.1 Messages flow for simulation and solving. 78
6.2 Use of an external optimizer. 82
6.3 Conflicting trajectories example. 91
6.4 Criticality function of a constraint agent. 92
6.5 Criticality mechanism (the criticality of the requests is indicated in parenthesis). 93

An Adaptive MAS for Self-Organizing Continuous Optimization 193

http://commons.wikimedia.org/wiki/Category:Files_by_User:Oleg_Alexandrov_from_en.wikipedia
http://en.wikipedia.org/wiki/File:Front_pareto.svg
http://thehuwaldtfamily.org/jtrl/research/Airplane%20Design/Dream%20Airplane%20Systems%20Bias.pdf
http://en.wikipedia.org/wiki/File:Turbofan_operation.svg

List of Figures

6.6 Illustration of coordination requirements on a basin function with 3 different
trajectories. 93

6.7 Cooperative trajectories for variable agents example. 96
6.8 Cooperative trajectories for model agent example. 98
6.9 Diverging cycle example. 100
6.10 Hidden dependency example. 102
6.11 Hidden dependency example (reproduced). 105

7.1 Uncertainties propagator as a black box function. 114

8.1 Overview of the ADELFE Method. 124
8.2 Actors and use cases identified during requirements studies for ID4CS. 125
8.3 AMAS agent architecture (as defined in ADELFE). 127
8.4 Example of MAY composition. 127
8.5 Agent Architecture — Behavior view. 128
8.6 Skills component internals. 130
8.7 Skills components dependencies tree with corresponding NCSs. 130
8.8 Agent Architecture — Communication view. 131
8.9 Agent Architecture — Monitoring view. 132
8.10 MAS Architecture. 133
8.11 User Interface of our prototype (problem canvas view). 135

9.1 class diagram of the Provider-Solicitor modeling. 139
9.2 Template on CPSP blueprints. 141
9.3 Conflicting Requests blueprint. 141
9.4 Cooperative Trajectories. 142
9.5 Cycle Solving blueprint. 143
9.6 Hidden Dependencies blueprint. 143
9.7 Asynchronous Requests blueprint. 144

10.1 Convergence of the Turbofan objectives for 100 random starting points. 152
10.2 Convergence of Viennet1 objectives for 100 random starting points. 152
10.3 Rosenbrock’s valley. 153
10.4 Alexandrov problem. 154
10.5 Alexandrov agents behavior. 155
10.6 Convergence of the Alexandrov objective for 100 random starting points. . . . 155
10.7 Sequential optimization trajectory. 158
10.8 Alexandrov agents behavior with perturbation (constraint change at dotted line).159
10.9 Turbofan agents behavior with perturbations (changes at dotted lines). 160

12.1 Examples of graph generation. 169
12.2 Time performances by MAS size. 170
12.3 Comparison of nodes median degree by graph type. 171
12.4 Time performances by node degree. 171
12.5 Example of springs network transformation. 175
12.6 Number of evaluations required by agents number. 175
12.7 Example of ID4CS test case validation. 176

194 Tom Jorquera

List of Tables

6.1 AVT behavior . 83
6.2 Conflicting Requests - Coordination Actions 95
6.3 Non Cooperative Situations Summary . 107
6.4 Non Cooperative Situations Solving Mechanisms 108

10.1 Summary of experiments results for the tests cases 156
10.2 Uncertainties associated with the variables . 157

11.1 Comparison Problem 1 – Simplicity . 163
11.2 Comparison Problem 1 – Efficiency . 163
11.3 Comparison Problem 1 – Accuracy . 164
11.4 Comparison Problem 2 – Simplicity . 165
11.5 Results on Comparison Problem 2 – Efficiency 165
11.6 Results on Comparison Problem 2 – Accuracy 166
11.7 Classification by criteria (based on [PLB04]) . 166

An Adaptive MAS for Self-Organizing Continuous Optimization 195

	Introduction
	I Context of the Study and State of the Art
	Continuous Optimization
	Basic Concepts
	Continuous versus Discrete Optimization
	No Free Lunch Theorem

	Continuous Optimization Methods
	Linear Optimization
	Local Methods
	Using Derivatives
	Derivative-Free

	Global Methods
	Exact Methods
	Heuristic Methods

	Analysis of Continuous Optimization

	Multi-Objective Optimization
	A Priori Methods
	Objectives Aggregation
	Lexicographic Method
	-constraint Method
	Goal Programming
	MinMax Method
	Analysis of a priori methods

	A Posteriori Methods
	Pareto Dominance
	Multi-Objective Evolutionary Algorithms

	Analysis of MOO

	Multidisciplinary Optimization
	Mono-Level Methods
	Multidisciplinary Feasible
	Individual Discipline Feasible
	All-At-Once

	Multi-Level Methods
	Concurrent Subspace Optimization
	Collaborative Optimization
	Bilevel Integrated System Synthesis
	Asymmetric Subspace Optimization
	MDO based on Independent Subspaces
	Quasiseparable Subsystems Decomposition

	Design Optimization Under Uncertainties
	Several types of uncertainties
	Uncertainties Modeling Techniques
	Using Uncertainty for Robust Optimization
	Uncertainties in Multidisciplinary Optimization

	Analysis of MDO

	Multi-Agent Systems for Optimization and the AMAS Theory
	Multi-Agent Systems
	Principles of Multi-Agent System
	Self-* capabilities
	Multi-Agent Systems for Distributed Problem Solving

	The Adaptive Multi-Agent Systems Theory
	Theorem of Functional Adequacy
	Cooperative Agents and Non Cooperative Situations
	The Importance of Locality
	ADELFE - A Method for Designing AMAS
	Conclusion on the Adaptive Multi-Agent Systems Theory

	II A Multi-Agent System for Continuous Optimization
	Agent-Based Modeling and Simulation of a Continuous Optimization Problem
	NDMO: A Natural Domain Modeling for Optimization
	Models
	Design Variables
	Outputs
	Constraints
	Objectives

	From an Optimization Problem to a Multi-Agent System
	Model Agent
	Variable Agent
	Output Agent
	Constraint Agent
	Objective Agent

	Agents Behavior
	Problem Simulation
	Variable Agent
	Model Agent
	Output Agent
	Constraint/Objective Agent

	Collective Solving
	Variable Agent
	Model Agent
	Output Agent
	Constraint Agent
	Objective Agent
	Adaptive Agents and Co-design

	Non-Cooperative Situations
	Conflicting Requests
	Cooperative Trajectories
	Cycle Solving
	Hidden Dependencies
	Asynchronous Messages
	Summary of Non-Cooperative Situations

	Extending the Multi-Agent System for Uncertainties
	From Deterministic Optimization to Optimization under Uncertainties
	Manipulating Uncertain Values
	Uncertainties Propagators
	Conclusion on Uncertainties Handling

	III Design, Implementation and Extending the AMAS4Opt Building Blocks
	ADELFE and MAY Architecture
	Overview of ADELFE
	Applying ADELFE for the Design of a Continuous Optimization Tool
	MAY Agent Architecture
	Behavior
	Communication
	Monitoring

	MAY MAS Architecture
	Integration into the Prototype
	MAS
	CORE
	GUI

	Collective Problem Solving Patterns
	Introduction - Collective Problem Solving Patterns are not Design Patterns
	Description of a Problem Solving Pattern
	Agent Roles
	Pattern Description

	Identified Collective Problem Solving Patterns
	Conflicting Requests
	Cooperative Trajectories
	Cycle Solving
	Hidden Dependencies
	Asynchronous Requests

	Conclusion on Collective Problem Solving Patterns

	IV Experiments and Validation
	Behavior Validation using Academic Test Cases
	Turbofan Problem
	Viennet1
	Rosenbrock's valley
	Alexandrov Problem
	Analysis of Academic Test Cases
	Optimization under Uncertainties
	Adaptation to Perturbations
	Perturbated Alexandrov Problem
	Perturbated Turbofan Problem

	Comparison with Existing Methods
	Comparison Criteria
	Comparison Problem 1
	Comparison Problem 2
	Comparison Synthesis

	Evaluating Scalability Performances using Generated Test Cases
	Generated Problem Graphs
	Generating NDMO Agent Graphs
	Experimental Results
	Analysis of Performances

	Springs Networks
	Representing Springs Networks with NDMO
	Springs Networks Experiments

	Conclusion and Perspectives

	V Appendix
	Author's Bibliography
	Bibliography

